ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Port-based Teleportation

57   0   0.0 ( 0 )
 نشر من قبل Sergii Strelchuk
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Deterministic port-based teleportation (dPBT) protocol is a scheme where a quantum state is guaranteed to be transferred to another system without unitary correction. We characterize the best achievable performance of the dPBT when both the resource state and the measurement is optimized. Surprisingly, the best possible fidelity for an arbitrary number of ports and dimension of the teleported state is given by the largest eigenvalue of a particular matrix -- Teleportation Matrix. It encodes the relationship between a certain set of Young diagrams and emerges as the the optimal solution to the relevant semidefinite program.

قيم البحث

اقرأ أيضاً

We propose a generalized form of optimal teleportation witness to demonstrate their importance in experimental detection of the larger set of entangled states useful for teleportation in higher dimensional systems. The interesting properties of our w itness reveal that teleportation witness can be used to characterize mixed state entanglement using Schmidt numbers. Our results show that while every teleportation witness is also a entanglement witness, the converse is not true. Also, we show that a hermitian operator is a teleportation witness iff it is a decomposable entanglement witness. In addition, we analyze the practical significance of our study by decomposing our teleportation witness in terms of Pauli and Gell-Mann matrices, which are experimentally measurable quantities.
120 - Jaehak Lee , Jiyong Park , 2017
Quantum teleportation is one of the crucial protocols in quantum information processing. It is important to accomplish an efficient teleportation under practical conditions, aiming at a higher fidelity desirably using fewer resources. The continuous- variable (CV) version of quantum teleportation was first proposed using a Gaussian state as a quantum resource, while other attempts were also made to improve performance by applying non-Gaussian operations. We investigate the CV teleportation to find its ultimate fidelity under energy constraint identifying an optimal quantum state. For this purpose, we present a formalism to evaluate teleportation fidelity as an expectation value of an operator. Using this formalism, we prove that the optimal state must be a form of photon-number entangled states. We further show that Gaussian states are near-optimal while non-Gaussian states make a slight improvement and therefore are rigorously optimal, particularly in the low-energy regime.
We study the continuous-variable (CV) quantum teleportation protocol in the case that one of the two modes of the shared entangled resource is sent to the receiver through a Gaussian Quantum Brownian Motion noisy channel. We show that if the channel is engineered in a non-Markovian regime, the information backflow from the environment induces an extra dependance of the phase of the two-mode squeezing of the shared Gaussian entangled resource on the transit time along the channel of the shared mode sent to the receiver. Optimizing over the non-Markovianity dependent phase of the squeezing yields a significant enhancement of the teleportation fidelity. For short enough channel transit times, essentially unit fidelity is achieved at realistic, finite values of the squeezing amplitude for a sufficiently large degree of the channel non-Markovianity.
307 - Konrad Banaszek 2000
We derive the maximum fidelity attainable for teleportation using a shared pair of d-level systems in an arbitrary pure state. This derivation provides a complete set of necessary and sufficient conditions for optimal teleportation protocols. We also discuss the information on the teleported particle which is revealed in course of the protocol using a non-maximally entangled state.
Quantum teleportation is a primitive in several important applications, including quantum communication, quantum computation, error correction, and quantum networks. In this work, we propose an optimal test for the performance of continuous-variable (CV) quantum teleportation in terms of the energy-constrained channel fidelity between ideal CV teleportation and its experimental implementation. All work prior to ours considered suboptimal tests of the performance of CV teleportation, focusing instead on its performance for particular states, such as ensembles of coherent states, squeezed states, cat states, etc. Here we prove that the optimal state for testing CV teleportation is an entangled superposition of twin-Fock states. We establish this result by reducing the problem of estimating the energy-constrained channel fidelity between ideal CV teleportation and its experimental approximation to a quadratic program and solving it. As an additional result, we obtain an analytical solution to the energy-constrained diamond distance between a photodetector and its experimental approximation. These results are relevant for experiments that make use of CV teleportation and photodetectors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا