ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Polarization of the 12/5 Fractional Quantum Hall Effect

113   0   0.0 ( 0 )
 نشر من قبل Wei Pan
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have carried out tilt magnetic field (B) studies of the u=12/5 fractional quantum Hall state in an ultra-high quality GaAs quantum well specimen. Its diagonal magneto-resistance Rxx shows a non-monotonic dependence on tilt angle (theta). It first increases sharply with increasing theta, reaches a maximal value of ~ 70 ohms at theta ~ 14^o, and then decreases at higher tilt angles. Correlated with this dependence of Rxx on theta, the 12/5 activation energy (Delta_{12/5}) also shows a non-monotonic tilt dependence. Delta_{12/5} first decreases with increasing theta. Around theta = 14^{o}, Delta_{12/5} disappears as Rxx becomes non-activated. With further increasing tilt angles, Delta_{12/5} reemerges and increases with theta. This tilt B dependence at u=12/5 is strikingly different from that of the well-documented 5/2 state and calls for more investigations on the nature of its ground state.

قيم البحث

اقرأ أيضاً

The fractional quantum Hall (FQH) effect at filling factor v = 5/2 has recently come under close scrutiny, as it may possess quasi-particle excitations obeying nonabelian statistics, a property sought for topologically protected quantum operations. Y et, its microscopic origin remains unidentified, and candidate model wave functions include those with undesirable abelian statistics. Here we report direct measurements of the electron spin polarization of the v = 5/2 FQH state using resistively detected nuclear magnetic resonance (NMR). We find the system to be fully polarized, which unambiguously rules out the most-likely abelian contender and thus lends strong support for the v = 5/2 state being nonabelian. Our measurements reveal an intrinsically different nature of interaction in the first-excited Landau level underlying the physics at v = 5/2.
We report on results of numerical studies of the spin polarization of the half filled second Landau level, which corresponds to the fractional quantum Hall state at filling factor $ u=5/2$. Our studies are performed using both exact diagonalization a nd Density Matrix Renormalization Group (DMRG) on the sphere. We find that for the Coulomb interaction the exact finite-system ground state is fully polarized, for shifts corresponding to both the Moore-Read Pfaffian state and its particle-hole conjugate (anti-Pfaffian). This result is found to be robust against small variations of the interaction. The low-energy excitation spectrum is consistent with spin-wave excitations of a fully-magnetized ferromagnet.
We present measurements of optical interband absorption in the fractional quantum Hall regime in a GaAs quantum well in the range 0 < nu < 1. We investigate the mechanism of singlet trion absorption, and show that its circular dichroism can be used a s a probe of the spin polarization of the ground state of the two-dimensional electron system (2DES). We find that at nu = 1/3 the 2DES is fully spin-polarized. Increasing the filling factor results in a gradual depolarization, with a sharp minimum in the dichroism near nu = 2/3. We find that in the range 0.5 < nu < 0.85 the 2DES remains partially polarized for the broad range of magnetic fields from 2.75 to 11 Tesla. This is consistent with the presence of a mixture of polarized and depolarized regions.
Recent theories suggest that the excitations of certain quantum Hall states may have exotic braiding statistics which could be used to build topological quantum gates. This has prompted an experimental push to study such states using confined geometr ies where the statistics can be tested. We study the transport properties of quantum point contacts (QPCs) fabricated on a GaAs/AlGaAs two dimensional electron gas that exhibits well-developed fractional quantum Hall effect, including at bulk filling fraction 5/2. We find that a plateau at effective QPC filling factor 5/2 is identifiable in point contacts with lithographic widths of 1.2 microns and 0.8 microns, but not 0.5 microns. We study the temperature and dc-current-bias dependence of the 5/2 plateau in the QPC, as well as neighboring fractional and integer plateaus in the QPC while keeping the bulk at filling factor 3. Transport near QPC filling factor 5/2 is consistent with a picture of chiral Luttinger liquid edge-states with inter-edge tunneling, suggesting that an incompressible state at 5/2 forms in this confined geometry.
The phenomenon of fractional quantum Hall effect (FQHE) was first experimentally observed 33 years ago. FQHE involves strong Coulomb interactions and correlations among the electrons, which leads to quasiparticles with fractional elementary charge. T hree decades later, the field of FQHE is still active with new discoveries and new technical developments. A significant portion of attention in FQHE has been dedicated to filling factor 5/2 state, for its unusual even denominator and possible application in topological quantum computation. Traditionally FQHE has been observed in high mobility GaAs heterostructure, but new materials such as graphene also open up a new area for FQHE. This review focuses on recent progress of FQHE at 5/2 state and FQHE in graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا