ﻻ يوجد ملخص باللغة العربية
We have carried out tilt magnetic field (B) studies of the u=12/5 fractional quantum Hall state in an ultra-high quality GaAs quantum well specimen. Its diagonal magneto-resistance Rxx shows a non-monotonic dependence on tilt angle (theta). It first increases sharply with increasing theta, reaches a maximal value of ~ 70 ohms at theta ~ 14^o, and then decreases at higher tilt angles. Correlated with this dependence of Rxx on theta, the 12/5 activation energy (Delta_{12/5}) also shows a non-monotonic tilt dependence. Delta_{12/5} first decreases with increasing theta. Around theta = 14^{o}, Delta_{12/5} disappears as Rxx becomes non-activated. With further increasing tilt angles, Delta_{12/5} reemerges and increases with theta. This tilt B dependence at u=12/5 is strikingly different from that of the well-documented 5/2 state and calls for more investigations on the nature of its ground state.
The fractional quantum Hall (FQH) effect at filling factor v = 5/2 has recently come under close scrutiny, as it may possess quasi-particle excitations obeying nonabelian statistics, a property sought for topologically protected quantum operations. Y
We report on results of numerical studies of the spin polarization of the half filled second Landau level, which corresponds to the fractional quantum Hall state at filling factor $ u=5/2$. Our studies are performed using both exact diagonalization a
We present measurements of optical interband absorption in the fractional quantum Hall regime in a GaAs quantum well in the range 0 < nu < 1. We investigate the mechanism of singlet trion absorption, and show that its circular dichroism can be used a
Recent theories suggest that the excitations of certain quantum Hall states may have exotic braiding statistics which could be used to build topological quantum gates. This has prompted an experimental push to study such states using confined geometr
The phenomenon of fractional quantum Hall effect (FQHE) was first experimentally observed 33 years ago. FQHE involves strong Coulomb interactions and correlations among the electrons, which leads to quasiparticles with fractional elementary charge. T