ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability and Electronic Properties of TiO2 Nanostructures With and Without B and N Doping

267   0   0.0 ( 0 )
 نشر من قبل Duncan Mowbray
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We address one of the main challenges to TiO2-photocatalysis, namely band gap narrowing, by combining nanostructural changes with doping. With this aim we compare TiO2s electronic properties for small 0D clusters, 1D nanorods and nanotubes, 2D layers, and 3D surface and bulk phases using different approximations within density functional theory and GW calculations. In particular, we propose very small (R < 0.5 nm) but surprisingly stable nanotubes with promising properties. The nanotubes are initially formed from TiO2 layers with the PtO2 structure, with the smallest (2,2) nanotube relaxing to a rutile nanorod structure. We find that quantum confinement effects - as expected - generally lead to a widening of the energy gap. However, substitutional doping with boron or nitrogen is found to give rise to (meta-)stable structures and the introduction of dopant and mid-gap states which effectively reduce the band gap. Boron is seen to always give rise to n-type doping while depending on the local bonding geometry, nitrogen may give rise to n-type or p-type doping. For under coordinated TiO2 surface structures found in clusters, nanorods, nanotubes, layers and surfaces nitrogen gives rise to acceptor states while for larger clusters and bulk structures donor states are introduced.



قيم البحث

اقرأ أيضاً

The implementation of graphene in semiconducting technology requires the precise knowledge about the graphene-semiconductor interface. In our work the structure and electronic properties of the graphene/$n$-Ge(110) interface are investigated on the l ocal (nm) and macro (from $mumathrm{m}$ to mm) scales via a combination of different microscopic and spectroscopic surface science techniques accompanied by density functional theory calculations. The electronic structure of freestanding graphene remains almost completely intact in this system, with only a moderate $n$-doping indicating weak interaction between graphene and the Ge substrate. With regard to the optimization of graphene growth it is found that the substrate temperature is a crucial factor, which determines the graphene layer alignment on the Ge(110) substrate during its growth from the atomic carbon source. Moreover, our results demonstrate that the preparation routine for graphene on the doped semiconducting material ($n$-Ge) leads to the effective segregation of dopants at the interface between graphene and Ge(110). Furthermore, it is shown that these dopant atoms might form regular structures at the graphene/Ge interface and induce the doping of graphene. Our findings help to understand the interface properties of the graphene-semiconductor interfaces and the effect of dopants on the electronic structure of graphene in such systems.
The presence in the graphyne sheets of a variable amount of sp2/sp1 atoms, which can be transformed into sp3-like atoms by covalent binding with one or two fluorine atoms, respectively, allows one to assume the formation of fulorinated graphynes (flu orographynes) with variable F/C stoichiometry. Here, employing DFT band structure calculations, we examine a series of fluorographynes, and the trends in their stability, structural and electronic properties have been discussed as depending on their stoichiometry: from C2F3 (F/C= 1.5) to C4F7 (F/C= 1.75).
Doping is one of the most common strategies for improving the photocatalytic and solar energy conversion properties of TiO$_2$, hence an accurate theoretical description of the electronic and optical properties of doped TiO$_2$ is of both scientific and practical interest. In this work we use many-body perturbation theory techniques to investigate two typical n-type dopants, Niobium and Hydrogen, in TiO$_2$ rutile. Using the GW approximation to determine band edges and defect energy levels, and the Bethe Salpeter equation for the calculation of the absorption spectra, we find that the defect energy levels form non-dispersive bands %associated with localized states lying $simeq 2.2 eV$ above the top of the corresponding valence bands ($simeq 0.9 eV$ below the conduction bands of the {it pristine} material). The defect states are also responsible for the appearance of low energy absorption peaks that enhance the solar spectrum absorption of rutile. The spatial distributions of the excitonic wavefunctions associated with these low energy excitations are very different for the two dopants, suggesting a larger mobility of photoexcited electrons in Nb-TiO$_2$.
We report the stability and electronic structures of the boron nitride nanotubes (BNNTs) with diameters below 4 A by semi-empirical quantum mechanical molecular dynamics simulations and ab initio calculations. Among them (3,0), (3,1), (2,2), (4,0), ( 4,1) and (3,2) BNNTs can be stable well over room temperature. These small BNNTs become globally stable when encapsulated in a larger BNNT. It is found that the energy gaps and work functions of these small BNNTs are strongly dependent on their chirality and diameters. The small zigzag BNNTs become desirable semiconductors and have peculiar distribution of nearly free electron states due to strong hybridization effect. When such a small BNNT is inserted in a larger one, the energy gap of the formed double-walled BNNT can even be much reduced due to the coupled effect of wall buckling difference and NFE-pi hybridization.
Two-dimensional metals offer intriguing possibilities to explore metallicity and other related properties in systems with reduced dimensionality. Here, following recent experimental reports of synthesis of two-dimensional metallic gallium (gallenene) on insulating substrates, we conduct a computational search of gallenene structures using the Particle Swarm Optimization algorithm, and identify stable low energy structures. Our calculations of the critical temperature for conventional superconductivity yield values $sim 7$ K for gallenene. We also emulate the presence of the substrate by introducing the external confining potential and test its effect on the structures with unstable phonons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا