ترغب بنشر مسار تعليمي؟ اضغط هنا

Profile control charts based on nonparametric $L$-1 regression methods

56   0   0.0 ( 0 )
 نشر من قبل Ying Wei
 تاريخ النشر 2012
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Classical statistical process control often relies on univariate characteristics. In many contemporary applications, however, the quality of products must be characterized by some functional relation between a response variable and its explanatory variables. Monitoring such functional profiles has been a rapidly growing field due to increasing demands. This paper develops a novel nonparametric $L$-1 location-scale model to screen the shapes of profiles. The model is built on three basic elements: location shifts, local shape distortions, and overall shape deviations, which are quantified by three individual metrics. The proposed approach is applied to the previously analyzed vertical density profile data, leading to some interesting insights.


قيم البحث

اقرأ أيضاً

Most research on regression discontinuity designs (RDDs) has focused on univariate cases, where only those units with a forcing variable on one side of a threshold value receive a treatment. Geographical regression discontinuity designs (GeoRDDs) ext end the RDD to multivariate settings with spatial forcing variables. We propose a framework for analysing GeoRDDs, which we implement using Gaussian process regression. This yields a Bayesian posterior distribution of the treatment effect at every point along the border. We address nuances of having a functional estimand defind on a border with potentially intricate topology, particularly when defining and estimating causal estimands of the local average treatment effect (LATE). The Bayesian estimate of the LATE can also be used as a test statistic in a hypothesis test with good frequentist properties, which we validate using simulations and placebo tests. We demonstrate our methodology with a dataset of property sales in New York City, to assess whether there is a discontinuity in housing prices at the border between two school district. We find a statistically significant difference in price across the border between the districts with $p$=0.002, and estimate a 20% higher price on average for a house on the more desirable side.
83 - Aiyou Chen , Jin Cao 2007
Network tomography has been regarded as one of the most promising methodologies for performance evaluation and diagnosis of the massive and decentralized Internet. This paper proposes a new estimation approach for solving a class of inverse problems in network tomography, based on marginal distributions of a sequence of one-dimensional linear projections of the observed data. We give a general identifiability result for the proposed method and study the design issue of these one dimensional projections in terms of statistical efficiency. We show that for a simple Gaussian tomography model, there is an optimal set of one-dimensional projections such that the estimator obtained from these projections is asymptotically as efficient as the maximum likelihood estimator based on the joint distribution of the observed data. For practical applications, we carry out simulation studies of the proposed method for two instances of network tomography. The first is for traffic demand tomography using a Gaussian Origin-Destination traffic model with a power relation between its mean and variance, and the second is for network delay tomography where the link delays are to be estimated from the end-to-end path delays. We compare estimators obtained from our method and that obtained from using the joint distribution and other lower dimensional projections, and show that in both cases, the proposed method yields satisfactory results.
This paper proposes a new methodology to predict and update the residual useful lifetime of a system using a sequence of degradation images. The methodology integrates tensor linear algebra with traditional location-scale regression widely used in re liability and prognosis. To address the high dimensionality challenge, the degradation image streams are first projected to a low-dimensional tensor subspace that is able to preserve their information. Next, the projected image tensors are regressed against time-to-failure via penalized location-scale tensor regression. The coefficient tensor is then decomposed using CANDECOMP/PARAFAC (CP) and Tucker decompositions, which enables parameter estimation in a high-dimensional setting. Two optimization algorithms with a global convergence property are developed for model estimation. The effectiveness of our models is validated using a simulated dataset and infrared degradation image streams from a rotating machinery.
In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application--inferrin g time-resolved aerosol concentration from a low-cost differential pressure sensor. The objective is to estimate a monotone function and make inference on the scaled first derivative of the function. We proposed Bayesian nonparametric monotone regression which uses a Bernstein polynomial basis to construct the regression function and puts a Dirichlet process prior on the regression coefficients. The base measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated normal. This construction imposes monotonicity while clustering the basis functions. Clustering the basis functions reduces the parameter space and allows the estimated regression function to be linear. With the proposed approach we can make closed-formed inference on the derivative of the estimated function including full quantification of uncertainty. In a simulation study the proposed method performs similar to other monotone regression approaches when the true function is wavy but performs better when the true function is linear. We apply the method to estimate time-resolved aerosol concentration with a newly-developed portable aerosol monitor. The R package bnmr is made available to implement the method.
We propose a novel broadcasting idea to model the nonlinearity in tensor regression non-parametrically. Unlike existing non-parametric tensor regression models, the resulting model strikes a good balance between flexibility and interpretability. A pe nalized estimation and corresponding algorithm are proposed. Our theoretical investigation, which allows the dimensions of the tensor covariate to diverge, indicates that the proposed estimation enjoys a desirable convergence rate. We also provide a minimax lower bound, which characterizes the optimality of the proposed estimator in a wide range of scenarios. Numerical experiments are conducted to confirm the theoretical finding and show that the proposed model has advantages over existing linear counterparts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا