ﻻ يوجد ملخص باللغة العربية
Most research on regression discontinuity designs (RDDs) has focused on univariate cases, where only those units with a forcing variable on one side of a threshold value receive a treatment. Geographical regression discontinuity designs (GeoRDDs) extend the RDD to multivariate settings with spatial forcing variables. We propose a framework for analysing GeoRDDs, which we implement using Gaussian process regression. This yields a Bayesian posterior distribution of the treatment effect at every point along the border. We address nuances of having a functional estimand defind on a border with potentially intricate topology, particularly when defining and estimating causal estimands of the local average treatment effect (LATE). The Bayesian estimate of the LATE can also be used as a test statistic in a hypothesis test with good frequentist properties, which we validate using simulations and placebo tests. We demonstrate our methodology with a dataset of property sales in New York City, to assess whether there is a discontinuity in housing prices at the border between two school district. We find a statistically significant difference in price across the border between the districts with $p$=0.002, and estimate a 20% higher price on average for a house on the more desirable side.
One of the most popular methodologies for estimating the average treatment effect at the threshold in a regression discontinuity design is local linear regression (LLR), which places larger weight on units closer to the threshold. We propose a Gaussi
Regression discontinuity (RD) design in a practical context is often contaminated by units behavior to manipulate their treatment assignment. However, we have no formal justification for point identification in such a contaminated RD design. Diagnost
Electricity market price predictions enable energy market participants to shape their consumption or supply while meeting their economic and environmental objectives. By utilizing the basic properties of the supply-demand matching process performed b
In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application--inferrin
House price increases have been steady over much of the last 40 years, but there have been occasional declines, most notably in the recent housing bust that started around 2007, on the heels of the preceding housing bubble. We introduce a novel growt