ﻻ يوجد ملخص باللغة العربية
The present work studies the Ghatak-Sherrington (GS) model in the presence of a magnetic random field (RF). Previous results obtained from GS model without RF suggest that disorder and frustration are the key ingredients to produce spontaneous inverse freezing (IF). However, in this model, the effects of disorder and frustration always appear combined. In that sense, the introduction of RF allows us to study the IF under the effects of a disorder which is not a source of frustration. The problem is solved within the one step replica symmetry approximation. The results show that the first order transition between the spin glass and the paramagnetic phases, which is related to the IF for a certain range of crystal field $D$, is gradually suppressed when the RF is increased.
We propose an expanded spin-glass model, called the quantum Ghatak-Sherrington model, which considers spin-1 quantum spin operators in a crystal field and in a transverse field. The analytic solutions and phase diagrams of this model are obtained by
We derive the Thouless-Anderson-Palmer (TAP) equations for the Ghatak and Sherrington model. Our derivation, based on the cavity method, holds at high temperature and at all values of the crystal field. It confirms the prediction of Yokota.
The behavior of the nonlinear susceptibility $chi_3$ and its relation to the spin-glass transition temperature $T_f$, in the presence of random fields, are investigated. To accomplish this task, the Sherrington-Kirkpatrick model is studied through th
The set of solutions of random constraint satisfaction problems (zero energy groundstates of mean-field diluted spin glasses) undergoes several structural phase transitions as the amount of constraints is increased. This set first breaks down into a
We study in detail the quantum Sherrington-Kirkpatrick (SK) model, i.e. the infinite-range Ising spin glass in a transverse field, by solving numerically the effective one-dimensional model that the quantum SK model can be mapped to in the thermodyna