ﻻ يوجد ملخص باللغة العربية
The behavior of the nonlinear susceptibility $chi_3$ and its relation to the spin-glass transition temperature $T_f$, in the presence of random fields, are investigated. To accomplish this task, the Sherrington-Kirkpatrick model is studied through the replica formalism, within a one-step replica-symmetry-breaking procedure. In addition, the dependence of the Almeida-Thouless eigenvalue $lambda_{rm AT}$ (replicon) on the random fields is analyzed. Particularly, in absence of random fields, the temperature $T_f$ can be traced by a divergence in the spin-glass susceptibility $chi_{rm SG}$, which presents a term inversely proportional to the replicon $lambda_{rm AT}$. As a result of a relation between $chi_{rm SG}$ and $chi_3$, the latter also presents a divergence at $T_f$, which comes as a direct consequence of $lambda_{rm AT}=0$ at $T_f$. However, our results show that, in the presence of random fields, $chi_3$ presents a rounded maximum at a temperature $T^{*}$, which does not coincide with the spin-glass transition temperature $T_f$ (i.e., $T^* > T_f$ for a given applied random field). Thus, the maximum value of $chi_3$ at $T^*$ reflects the effects of the random fields in the paramagnetic phase, instead of the non-trivial ergodicity breaking associated with the spin-glass phase transition. It is also shown that $chi_3$ still maintains a dependence on the replicon $lambda_{rm AT}$, although in a more complicated way, as compared with the case without random fields. These results are discussed in view of recent observations in the LiHo$_x$Y$_{1-x}$F$_4$ compound.
We study in detail the quantum Sherrington-Kirkpatrick (SK) model, i.e. the infinite-range Ising spin glass in a transverse field, by solving numerically the effective one-dimensional model that the quantum SK model can be mapped to in the thermodyna
We investigate generalized Sherrington--Kirkpatrick glassy systems without reflection symmetry. In the neighbourhood of the transition temperature we in general uncover the structure of the glass state building the full-replica-symmetry breaking solu
The interplay between quantum fluctuations and disorder is investigated in a spin-glass model, in the presence of a uniform transverse field $Gamma$, and a longitudinal random field following a Gaussian distribution with width $Delta$. The model is s
We develop a simple method to study the high temperature, or high external field, behavior of the Sherrington-Kirkpatrick mean field spin glass model. The basic idea is to couple two different replicas with a quadratic term, trying to push out the tw
In a region above the Almeida-Thouless line, where we are able to control the thermodynamic limit of the Sherrington-Kirkpatrick model and to prove replica symmetry, we show that the fluctuations of the overlaps and of the free energy are Gaussian, o