ترغب بنشر مسار تعليمي؟ اضغط هنا

Low energy electrodynamics of the Kondo-lattice antiferromagnet CeCu$_2$Ge$_2$

68   0   0.0 ( 0 )
 نشر من قبل Grace Bosse
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present time-domain THz spectroscopy data of a thin film of the Kondo-lattice antiferromagnet CeCu$_2$Ge$_2$. The low frequency complex conductivity has been obtained down to temperatures below the onset of magnetic order. At low temperatures a narrow Drude-like peak forms, which is similar to ones found in other heavy fermion compounds that do not exhibit magnetic order. Using this data in conjunction with DC resistivity measurements, we obtain the frequency dependence of the scattering rate and effective mass through an extended Drude model analysis. The zero frequency limit of this analysis yields evidence for large mass renormalization even in the magnetic state, the scale of which agrees closely with that obtained from thermodynamic measurements.

قيم البحث

اقرأ أيضاً

The recently proposed novel materials class called Weyl-Kondo semimetal (WKSM) is a time reversal invariant but inversion symmetry broken Kondo semimetal in which Weyl nodes are pushed to the Fermi level by the Kondo interaction. Here we explore whet her CeCu$_{1+x}$As$_2$ may be a new WKSM candidate. We report on its single-crystal growth, structure determination and physical properties investigation. Previously published studies on polycrystalline samples suggest that it is indeed a Kondo semimetal, which is confirmed by our investigations on single crystals. X-ray diffraction reveals that CeCu$_{1+x}$As$_2$ crystallizes in a tetragonal centrosymmetric structure, although the inversion symmetry could still be broken locally due to partially occupied Cu sites. Chemical analysis results in an average occupation $x$ = 0.11(1). The electrical resistivity increases logarithmically with decreasing temperature, and saturates below 10 K. A Kondo temperature $T_{mathrm{K}}$ $approx$ 4 K is extracted from entropy, estimated from the specific heat measurements. From Hall effect experiments, a charge carrier density of $8.8 times 10^{20}$ cm$^{-3}$ is extracted, a value characteristic of a semimetal. The magnetization shows pronounced anisotropy, with no evidence of magnetic ordering down to 0.4 K. We thus classify CeCu$_{1.11}$As$_2$ as a tetragonal Kondo semimetal with anisotropic magnetic properties, with a possibly broken inversion symmetry, thus fulfilling the necessary conditions for a WKSM state.
The crystal-field ground state wave function of CeCu$_2$Si$_2$ has been investigated with linear polarized $M$-edge x-ray absorption spectroscopy from 250mK to 250K, thus covering the superconducting ($T_{text{c}}$=0.6K), the Kondo ($T_{text{K}}$$app rox$20K) as well as the Curie-Weiss regime. The comparison with full-multiplet calculations shows that the temperature dependence of the experimental linear dichroism is well explained with a $Gamma_7^{(1)}$ crystal-field ground-state and the thermal population of excited states at around 30meV. The crystal-field scheme does not change throughout the entire temperature range thus making the scenario of orbital switching unlikely. Spectroscopic evidence for the presence of the Ce 4$f^0$ configuration in the ground state is consistent with the possibility for a multi-orbital character of the ground state. We estimate from the Kondo temperature and crystal-field splitting energies that several percents of the higher lying $Gamma_6$ state and $Gamma_7^{(2)}$ crystal-field states are mixed into the primarily $Gamma_7^{(1)}$ ground state. This estimate is also supported by re-normalized band-structure calculations that uses the experimentally determined crystal-field scheme.
We report Raman-scattering results of YbRu$_2$Ge$_2$ single crystals to explore the phononic and crystal-field (CF) excitations. This heavy-fermion metal is suggested to enter a ferroquadrupolar (FQ) phase below T$_0$=10 K. The tetragonal CF potentia l splits the Yb$^{3+}$ $^2F_{7/2}$ ground multiplet into two $Gamma_6$ and two $Gamma_7$ Kramers doublets. We establish the following CF level scheme of the ground multiplet: a $Gamma_6$ ground state, with the two $Gamma_7$ states at 2 cm$^{-1}$, 95 cm$^{-1}$ and the other $Gamma_6$ state at 239 cm$^{-1}$. The $sim$2 cm$^{-1}$ separation between the CF ground and first excited states is in agreement with the previously proposed quasi-quartet CF ground state. The intensity of the lowest-energy CF transition remarkably increases on cooling, indicating a coupling of this CF excitation to the quadrupolar fluctuations above T$_0$. From symmetry analysis, we suggest that the FQ order has B$_{1g}$ symmetry. Moreover, temperature-dependent study of four Raman-active phonon modes shows that the intensities of the A$_{1g}$ and one E$_{g}$ modes increase significantly on cooling, which is explained by a near-resonant coupling between these two phonon modes and CF transitions.
We report on the single crystal growth and anisotropic physical properties of CeAgAs$_2$. The compound crystallizes as on ordered variant of the HfCuSi$_2$-type crystal structure and adopts the orthorhombic space group $Pmca$~(#57) with two symmetry inequivalent cerium atomic positions in the unit cell. The orthorhombic crystal structure of our single crystal was confirmed from the powder x-ray diffraction and from electron diffraction patterns obtained from the transmission electron microscope. The anisotropic physical properties have been investigated on a good quality single crystal by measuring the magnetic susceptibility, isothermal magnetization, electrical transport and heat capacity. The magnetic susceptibility and magnetization measurements revealed that this compound orders antiferromagnetically with two closely spaced magnetic transitions at $T_{rm N1} = 6$~K and $T_{rm N2} = 4.9$~K. Magnetization studies have revealed a large magnetocrystalline anisotropy due to the crystalline electric field (CEF) with an easy axis of magnetization along the [010] direction. The magnetic susceptibility measured along the [001] direction exhibited a broad hump in the temperature range 50 to 250~K, while typical Curie-Weiss behaviour was observed along the other two orthogonal directions. The electrical resistivity and the heat capacity measurements revealed that CeAgAs$_2$ is a Kondo lattice system with a magnetic ground state.
112 - Y. Lai , S. M. Saunders , D. Graf 2017
CeCu$_2$Si$_2$ is an exemplary correlated electron metal that features two domes of unconventional superconductivity in its temperature-pressure phase diagram. The first dome surrounds an antiferromagnetic quantum critical point, whereas the more exo tic second dome may span the termination point of a line of $f$-electron valence transitions. This behavior has received intense interest, but what has been missing are ways to access the high pressure behavior under milder conditions. Here we study Si $rightarrow$ P chemical substitution, which compresses the unit cell volume but simultaneously weakens the hybridization between the $f$- and conduction electron states and encourages complex magnetism. At concentrations that show magnetism, applied pressure suppresses the magnetic ordering temperature and superconductivity is recovered for samples with low disorder. These results reveal that the electronic behavior in this system is controlled by a nontrivial combination of effects from unit cell volume and electronic shell filling. Guided by this topography we discuss prospects for uncovering a valence fluctuation quantum phase transition in the broader family of Ce-based ThCr$_2$Si$_2$-type materials through chemical substitution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا