ﻻ يوجد ملخص باللغة العربية
CeCu$_2$Si$_2$ is an exemplary correlated electron metal that features two domes of unconventional superconductivity in its temperature-pressure phase diagram. The first dome surrounds an antiferromagnetic quantum critical point, whereas the more exotic second dome may span the termination point of a line of $f$-electron valence transitions. This behavior has received intense interest, but what has been missing are ways to access the high pressure behavior under milder conditions. Here we study Si $rightarrow$ P chemical substitution, which compresses the unit cell volume but simultaneously weakens the hybridization between the $f$- and conduction electron states and encourages complex magnetism. At concentrations that show magnetism, applied pressure suppresses the magnetic ordering temperature and superconductivity is recovered for samples with low disorder. These results reveal that the electronic behavior in this system is controlled by a nontrivial combination of effects from unit cell volume and electronic shell filling. Guided by this topography we discuss prospects for uncovering a valence fluctuation quantum phase transition in the broader family of Ce-based ThCr$_2$Si$_2$-type materials through chemical substitution.
The crystal-field ground state wave function of CeCu$_2$Si$_2$ has been investigated with linear polarized $M$-edge x-ray absorption spectroscopy from 250mK to 250K, thus covering the superconducting ($T_{text{c}}$=0.6K), the Kondo ($T_{text{K}}$$app
In this paper the low-temperature properties of two isostructural canonical heavy-fermion compounds are contrasted with regards to the interplay between antiferromagnetic (AF) quantum criticality and superconductivity. For CeCu$_2$Si$_2$, fully-gappe
The application of pressure as well as the successive substitution of Ru with Fe in the hidden order (HO) compound URu$_2$Si$_2$ leads to the formation of the large moment antiferromagnetic phase (LMAFM). Here we have investigated the substitution se
Quantum materials are epitomized by the influence of collective modes upon their macroscopic properties. Relatively few examples exist, however, whereby coherence of the ground-state wavefunction directly contributes to the conductivity. Notable exam
We present time-domain THz spectroscopy data of a thin film of the Kondo-lattice antiferromagnet CeCu$_2$Ge$_2$. The low frequency complex conductivity has been obtained down to temperatures below the onset of magnetic order. At low temperatures a na