ﻻ يوجد ملخص باللغة العربية
Recently, the topic of Casimir repulsion has received a great deal of attention, largely because of the possibility of technological application. The general subject has a long history, going back to the self-repulsion of a conducting spherical shell and the repulsion between a perfect electric conductor and a perfect magnetic conductor. Recently it has been observed that repulsion can be achieved between ordinary conducting bodies, provided sufficient anisotropy is present. For example, an anisotropic polarizable atom can be repelled near an aperture in a conducting plate. Here we provide new examples of this effect, including the repulsion on such an atom moving on a trajectory nonintersecting a conducting cylinder; in contrast, such repulsion does not occur outside a sphere. Classically, repulsion does occur between a conducting ellipsoid placed in a uniform electric field and an electric dipole. The Casimir-Polder force between an anisotropic atom and an anisotropic dielectric semispace does not exhibit repulsion. The general systematics of repulsion are becoming clear.
Casimir and Casimir-Polder repulsion have been known for more than 50 years. The general Lifshitz configuration of parallel semi-infinite dielectric slabs permits repulsion if they are separated by a dielectric fluid that has a value of permittivity
In this paper we study an archetypical scenario in which repulsive Casimir-Polder forces between an atom or molecule and two macroscopic bodies can be achieved. This is an extension of previous studies of the interaction between a polarizable atom an
It has always been conventionally understood that, in the dilute limit, the Casimir energy of interaction between bodies or the Casimir self-energy of a dielectric body could be identified with the sum of the van der Waals or Casimir-Polder energies
Polarisable atoms and molecules experience the Casimir-Polder force near magnetoelectric bodies, a force that is induced by quantum fluctuations of the electromagnetic field and the matter. Atoms and molecules in relative motion to a magnetoelectric
We take a closer look at the fundamental Casimir-Polder interaction between quantum particles and dispersive dielectric surfaces with surface polariton or plasmon resonances. Linear response theory shows that in the near field, van der Waals, regime