ﻻ يوجد ملخص باللغة العربية
The ability to coherently spectrally manipulate quantum information has the potential to improve qubit rates across quantum channels and find applications in optical quantum computing. In this paper we present experiments that use a multi-element solenoid combined with the three-level gradient echo memory scheme to perform precision spectral manipulation of optical pulses. These operations include bandwidth and frequency manipulation, spectral filtering of separate frequency components, as well as time-delayed interference between pulses with both the same, and different, frequencies. These operations have potential uses in quantum information applications.
We examine coherent memory manipulation in a $Lambda$-type medium, using the second order solution presented by Groves, Clader and Eberly [J. Phys. B: At. Mol. Opt. Phys. 46, 224005 (2013)] as a guide. The analytical solution obtained using the Darbo
Quantum memory is the core device for the construction of large-scale quantum networks. For scalable and convenient practical applications, integrated optical memories, especially on-chip optical memories, are crucial requirements because they can be
The optimal discrimination of non-orthogonal quantum states with minimum error probability is a fundamental task in quantum measurement theory as well as an important primitive in optical communication. In this work, we propose and experimentally rea
Maximally entangled photon pairs with a spatial degree of freedom is a potential way for realizing high-capacity quantum computing and communication. However, methods to generate such entangled states with high quality, high brightness, and good cont
A major challenge in the field of quantum computing is the construction of scalable qubit coupling architectures. Here, we demonstrate a novel tuneable coupling circuit that allows superconducting qubits to be coupled over long distances. We show tha