ﻻ يوجد ملخص باللغة العربية
The optimal discrimination of non-orthogonal quantum states with minimum error probability is a fundamental task in quantum measurement theory as well as an important primitive in optical communication. In this work, we propose and experimentally realize a new and simple quantum measurement strategy capable of discriminating two coherent states with smaller error probabilities than can be obtained using the standard measurement devices; the Kennedy receiver and the homodyne receiver.
Coherent states of the quantum electromagnetic field, the quantum description of ideal laser light, are a prime candidate as information carriers for optical communications. A large body of literature exists on quantum-limited parameter estimation an
Retrieving classical information encoded in optical modes is at the heart of many quantum information processing tasks, especially in the field of quantum communication and sensing. Yet, despite its importance, the fundamental limits of optical mode
The discrimination of coherent states is a key task in optical communication and quantum key distribution protocols. In this work, we use a photon-number-resolving detector, the transition-edge sensor, to discriminate binary-phase-shifted coherent st
We propose and experimentally demonstrate non-destructive and noiseless removal (filtering) of vacuum states from an arbitrary set of coherent states of continuous variable systems. Errors i.e. vacuum states in the quantum information are diagnosed t
We demonstrate a sequence of two quantum teleportations of optical coherent states, combining two high-fidelity teleporters for continuous variables. In our experiment, the individual teleportation fidelities are evaluated as F_1 = 0.70 pm 0.02 and F