ﻻ يوجد ملخص باللغة العربية
The selective optical detection of individual metallic nanoparticles (NPs) with high spatial and temporal resolution is a challenging endeavour, yet is key to the understanding of their optical response and their exploitation in applications from miniaturised optoelectronics and sensors to medical diagnostics and therapeutics. However, only few reports on ultrafast pump-probe spectroscopy on single small metallic NPs are available to date. Here, we demonstrate a novel phase-sensitive four-wave mixing (FWM) microscopy in heterodyne detection to resolve for the first time the ultrafast changes of real and imaginary part of the dielectric function of single small (<40nm) spherical gold NPs. The results are quantitatively described via the transient electron temperature and density in gold considering both intraband and interband transitions at the surface plasmon resonance. This novel microscopy technique enables background-free detection of the complex susceptibility change even in highly scattering environments and can be readily applied to any metal nanostructure.
We show that a dimer made of two gold nanospheres exhibits a remarkable efficiency for second-harmonic generation under femtosecond optical excitation. The detectable nonlinear emission for the given particle size and excitation wavelength arises whe
We demonstrate that nanocavity plasmons generated a few nanometers away from a molecule can induce molecular motion. For this, we study the well-known rapid shuttling motion of zinc phthalocyanine molecules adsorbed on ultrathin NaCl films by combini
Laser-induced manipulation of magnetism at the nanoscale is a rapidly growing research topic with potential for applications in spintronics. In this work, we address the role of the scattering cross section, thermal effects, and laser fluence on the
The motion of electrons in or near solids, liquids and gases can be tracked by forcing their ejection with attosecond x-ray pulses, derived from femtosecond lasers. The momentum of these emitted electrons carries the imprint of the electronic state.
We report a simple, rapid, and quantitative wide-field technique to measure the optical extinction $sigma_{rm ext}$ and scattering $sigma_{rm sca}$ cross-section of single nanoparticles using wide-field microscopy enabling simultaneous acquisition of