ترغب بنشر مسار تعليمي؟ اضغط هنا

An apparatus architecture for femtosecond transmission electron microscopy

319   0   0.0 ( 0 )
 نشر من قبل William Bryan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The motion of electrons in or near solids, liquids and gases can be tracked by forcing their ejection with attosecond x-ray pulses, derived from femtosecond lasers. The momentum of these emitted electrons carries the imprint of the electronic state. Aberration corrected transmission electron microscopes have observed individual atoms, and have sufficient energy sensitivity to quantify atom bonding and electronic configurations. Recent developments in ultrafast electron microscopy and diffraction indicate that spatial and temporal information can be collected simultaneously. In the present work, we push the capability of femtosecond transmission electron microscopy (fs-TEM) towards that of the state of the art in ultrafast lasers and electron microscopes. This is anticipated to facilitate unprecedented elucidation of physical, chemical and biological structural dynamics on electronic time and length scales. The fs-TEM numerically studied employs a nanotip source, electrostatic acceleration to 70 keV, magnetic lens beam transport and focusing, a condenser-objective around the sample and a terahertz temporal compressor, including space charge effects during propagation. With electron emission equivalent to a 20 fs laser pulse, we find a spatial resolution below 10 nm and a temporal resolution of below 10 fs will be feasible for pulses comprised of on average 20 electrons. The influence of a transverse electric field at the sample is modelled, indicating that a field of 1 V/$mu$m can be resolved.



قيم البحث

اقرأ أيضاً

We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Gottingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9 {AA} focused beam diameter, 200 fs pulse duration and 0.6 eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free electron beams.
Transmission electron microscopy (TEM) is carried out in vacuum to minimize the interaction of the imaging electrons with gas molecules while passing through the microscope column. Nevertheless, in typical devices, the pressure remains at 10^-7 mbar or above, providing a large number of gas molecules for the electron beam to crack, which can lead to structural changes in the sample. Here, we describe experiments carried out in a modified scanning TEM (STEM) instrument, based on the Nion UltraSTEM 100. In this instrument, the base pressure at the sample is around 2x10^-10 mbar, and can be varied up to 10^-6 mbar through introduction of gases directly into the objective area while maintaining atomic resolution imaging conditions. We show that air leaked into the microscope column during the experiment is efficient in cleaning graphene samples from contamination, but ineffective in damaging the pristine lattice. Our experiments also show that exposure to O2 and H2O lead to a similar result, oxygen providing an etching effect nearly twice as efficient as water, presumably due to the two O atoms per molecule. H2 and N2 environments have no influence on etching. These results show that the residual gas environment in typical TEM instruments can have a large influence on the observations, and show that chemical etching of carbon-based structures can be effectively carried out with oxygen.
Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution an d reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180{deg} tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.
The electronic, optical, and magnetic properties of quantum solids are determined by their low-energy (< 100 meV) many-body excitations. Dynamical characterization and manipulation of such excitations relies on tools that combine nm-spatial, fs-tempo ral, and meV-spectral resolution. Currently, phonons and collective plasmon resonances can be imaged in nanostructures with sub-nm and 10s meV space/energy resolution using state-of-the-art energy-filtered transmission electron microscopy (TEM), but only under static conditions, while fs-resolved measurements are common but lack spatial or energy resolution. Here, we demonstrate a new method of spectrally resolved photon-induced near-field electron microscopy (SRPINEM) that allows us to obtain nm-fs-resolved maps of nanoparticle plasmons with an energy resolution determined by the laser linewidth (20 meV in this work), and not limited by electron beam and spectrometer energy spreading. This technique can be extended to any optically-accessible low-energy mode, thus pushing TEM to a previously inaccessible spectral domain with an unprecedented combination of space, energy and temporal resolution.
Chiral indices determine important properties of carbon nanotubes (CNTs). Unfortunately, their determination from high-resolution transmission electron microscopy (HRTEM) images, the most accurate method for assigning chirality, is a tedious task. We develop a Convolutional Neural Network that automatizes this process. A large and realistic training data set of CNT images is obtained by means of atomistic computer simulations coupled with the multi-slice approach for image generation. In most cases, results of the automated assignment are in excellent agreement with manual classification, and the origin of failures is identified. The current approach, which combines HRTEM imaging and deep learning algorithms allows the analysis of a statistically significant number of HRTEM images of carbon nanotubes, paving the way for robust estimates of experimental chiral distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا