ﻻ يوجد ملخص باللغة العربية
The motion of electrons in or near solids, liquids and gases can be tracked by forcing their ejection with attosecond x-ray pulses, derived from femtosecond lasers. The momentum of these emitted electrons carries the imprint of the electronic state. Aberration corrected transmission electron microscopes have observed individual atoms, and have sufficient energy sensitivity to quantify atom bonding and electronic configurations. Recent developments in ultrafast electron microscopy and diffraction indicate that spatial and temporal information can be collected simultaneously. In the present work, we push the capability of femtosecond transmission electron microscopy (fs-TEM) towards that of the state of the art in ultrafast lasers and electron microscopes. This is anticipated to facilitate unprecedented elucidation of physical, chemical and biological structural dynamics on electronic time and length scales. The fs-TEM numerically studied employs a nanotip source, electrostatic acceleration to 70 keV, magnetic lens beam transport and focusing, a condenser-objective around the sample and a terahertz temporal compressor, including space charge effects during propagation. With electron emission equivalent to a 20 fs laser pulse, we find a spatial resolution below 10 nm and a temporal resolution of below 10 fs will be feasible for pulses comprised of on average 20 electrons. The influence of a transverse electric field at the sample is modelled, indicating that a field of 1 V/$mu$m can be resolved.
We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative
Transmission electron microscopy (TEM) is carried out in vacuum to minimize the interaction of the imaging electrons with gas molecules while passing through the microscope column. Nevertheless, in typical devices, the pressure remains at 10^-7 mbar
Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution an
The electronic, optical, and magnetic properties of quantum solids are determined by their low-energy (< 100 meV) many-body excitations. Dynamical characterization and manipulation of such excitations relies on tools that combine nm-spatial, fs-tempo
Chiral indices determine important properties of carbon nanotubes (CNTs). Unfortunately, their determination from high-resolution transmission electron microscopy (HRTEM) images, the most accurate method for assigning chirality, is a tedious task. We