ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint analysis of X-ray and Sunyaev Zeldovich observations of galaxy clusters using an analytic model of the intra-cluster medium

507   0   0.0 ( 0 )
 نشر من قبل Nicole Hasler
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a joint analysis of X-ray and Sunyaev Zeldovich (SZ) effect data using an analytic model that describes the gas properties of galaxy clusters. The joint analysis allows the measurement of the cluster gas mass fraction profile and Hubble constant independent of cosmological parameters. Weak cosmological priors are used to calculate the overdensity radius within which the gas mass fractions are reported. Such an analysis can provide direct constraints on the evolution of the cluster gas mass fraction with redshift. We validate the model and the joint analysis on high signal-to-noise data from the Chandra X-ray Observatory and the Sunyaev-Zeldovich Array for two clusters, Abell 2631 and Abell 2204.



قيم البحث

اقرأ أيضاً

368 - Kaustuv Basu 2010
We present results from a joint X-ray/Sunyaev-Zeldovich modeling of the intra-cluster gas using XMM-Newton and APEX-SZ imaging data. The goal is to study the physical properties of the intra-cluster gas with a non-parametric de-projection method that is, aside from the assumption of spherical symmetry, free from modeling bias. We demonstrate a decrease of gas temperature in the cluster outskirts, and also measure the gas entropy profile, both of which are obtained for the first time independently of X-ray spectroscopy, using Sunyaev-Zeldovich and X-ray imaging data. The contribution of the APEX-SZ systematic uncertainties in measuring the gas temperature at large radii is shown to be small compared to the XMM-Newton and Chandra systematic spectroscopic errors.
We present pressure profiles of galaxy clusters determined from high resolution Sunyaev-Zeldovich (SZ) effect observations of fourteen clusters, which span the redshift range $ 0.25 < z < 0.89$. The procedure simultaneously fits spherical cluster mod els to MUSTANG and Bolocam data. In this analysis, we adopt the generalized NFW parameterization of pressure profiles to produce our models. Our constraints on ensemble-average pressure profile parameters, in this study $gamma$, $C_{500}$, and $P_0$, are consistent with those in previous studies, but for individual clusters we find discrepancies with the X-ray derived pressure profiles from the ACCEPT2 database. We investigate potential sources of these discrepancies, especially cluster geometry, electron temperature of the intracluster medium, and substructure. We find that the ensemble mean profile for all clusters in our sample is described by the parameters: $[gamma,C_{500},P_0] = [0.3_{-0.1}^{+0.1}, 1.3_{-0.1}^{+0.1}, 8.6_{-2.4}^{+2.4}]$, for cool core clusters: $[gamma,C_{500},P_0] = [0.6_{-0.1}^{+0.1}, 0.9_{-0.1}^{+0.1}, 3.6_{-1.5}^{+1.5}]$, and for disturbed clusters: $[gamma,C_{500},P_0] = [0.0_{-0.0}^{+0.1}, 1.5_{-0.2}^{+0.1},13.8_{-1.6}^{+1.6}]$. Four of the fourteen clusters have clear substructure in our SZ observations, while an additional two clusters exhibit potential substructure.
244 - J. Liu , J. Mohr , A. Saro 2014
(Abridged) We use 95, 150, and 220GHz observations from the SPT to examine the SZE signatures of a sample of 46 X-ray selected groups and clusters drawn from ~6 deg^2 of the XMM-BCS. These systems extend to redshift z=1.02, have characteristic masses ~3x lower than clusters detected directly in the SPT data and probe the SZE signal to the lowest X-ray luminosities (>10^42 erg s^-1) yet. We develop an analysis tool that combines the SZE information for the full ensemble of X-ray-selected clusters. Using X-ray luminosity as a mass proxy, we extract selection-bias corrected constraints on the SZE significance- and Y_500-mass relations. The SZE significance- mass relation is in good agreement with an extrapolation of the relation obtained from high mass clusters. However, the fit to the Y_500-mass relation at low masses, while in good agreement with the extrapolation from high mass SPT clusters, is in tension at 2.8 sigma with the constraints from the Planck sample. We examine the tension with the Planck relation, discussing sample differences and biases that could contribute. We also present an analysis of the radio galaxy point source population in this ensemble of X-ray selected systems. We find 18 of our systems have 843 MHz SUMSS sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8$sigma$ significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y_500 signal that is (17+-9) per cent in this sample of low mass systems.
We present Sunyaev-Zeldovich (SZ) effect observations of a sample of 25 massive relaxed galaxy clusters observed with the Sunyaev-Zeldovich Array (SZA), an 8-element interferometer that is part of the Combined Array for Research in Millimeter-wave As tronomy (CARMA). We perform an analysis of new SZA data and archival Chandra observations of this sample to investigate the integrated pressure -- a proxy for cluster mass -- determined from X-ray and SZ observations, two independent probes of the intra-cluster medium. This analysis makes use of a model for the intra-cluster medium introduced by Bulbul (2010) which can be applied simultaneously to SZ and X-ray data. With this model, we estimate the pressure profile for each cluster using a joint analysis of the SZ and X-ray data, and using the SZ data alone. We find that the integrated pressures measured from X-ray and SZ data are consistent. This conclusion is in agreement with recent results obtained using WMAP and Planck data, confirming that SZ and X-ray observations of massive clusters detect the same amount of thermal pressure from the intra-cluster medium. To test for possible biases introduced by our choice of model, we also fit the SZ data using the universal pressure profile proposed by Arnaud (2010), and find consistency between the two models out to r500 in the pressure profiles and integrated pressures.
131 - Fabio Zandanel 2013
Cosmological hydrodynamical simulations of galaxy clusters are still challenged to produce a model for the intracluster medium that matches all aspects of current X-ray and Sunyaev-Zeldovich observations. To facilitate such comparisons with future si mulations and to enable realistic cluster population studies for modeling e.g., non-thermal emission processes, we construct a phenomenological model for the intracluster medium that is based on a representative sample of observed X-ray clusters. We create a mock galaxy cluster catalog based on the large collisionless N-body simulation MultiDark, by assigning our gas density model to each dark matter cluster halo. Our clusters are classified as cool-core and non cool-core according to a dynamical disturbance parameter. We demonstrate that our gas model matches the various observed Sunyaev-Zeldovich and X-ray scaling relations as well as the X-ray luminosity function, thus enabling to build a reliable mock catalog for present surveys and forecasts for future experiments. In a companion paper, we apply our catalogs to calculate non-thermal radio and gamma-ray emission of galaxy clusters. We make our cosmologically complete multi-frequency mock catalogs for the (non-)thermal cluster emission at different redshifts publicly and freely available online through the MultiDark database (www.multidark.org).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا