ترغب بنشر مسار تعليمي؟ اضغط هنا

The Superconducting Transition Temperatures of Fe1+xSe1--y, Fe1+xSe1--yTey and (K/Rb/Cs)zFe2--xSe2

81   0   0.0 ( 0 )
 نشر من قبل Dale Harshman
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent contribution to this journal, it was shown that the transition temperatures of optimal high-Tc compounds obey the algebraic relation, Tc0 = kB-1{beta}/ell{zeta}, where ell is related to the mean spacing between interacting charges in the layers, {zeta} is the distance between interacting electronic layers, {beta} is a universal constant and kB is Boltzmanns constant. The equation was derived assuming pairing based on interlayer Coulomb interactions between physically separated charges. This theory was initially validated for 31 compounds from five different high-Tc families (within an accuracy of pm1.37 K). Herein we report the addition of Fe1+xSe1-y and Fe1+xSe1-yTey (both optimized under pressure) and AzFe2-xSe2 (for A = K, Rb, or Cs) to the growing list of Coulomb-mediated superconducting compounds in which Tc0 is determined by the above equation. Doping in these materials is accomplished through the introduction of excess Fe and/or Se deficiency, or a combination of alkali metal and Fe vacancies. Consequently, a very small number of vacancies or interstitials can induce a superconducting state with a substantial transition temperature. The confirmation of the above equation for these Se-based Fe chalcogenides increases to six the number of superconducting families for which the transition temperature can be accurately predicted.

قيم البحث

اقرأ أيضاً

In the heavily hole-doped iron-based superconductors $A$Fe$_2$As$_2$ ($A=$ K, Rb, and Cs), the electron effective mass increases rapidly with alkali-ion radius. To study how the mass enhancement affects the superconducting state, we measure the Londo n penetration depth $lambda(T)$ in clean crystals of $A$Fe$_2$As$_2$ down to low temperature $Tsim0.1$ K. In all systems, the superfluid stiffness $rho_s(T)=lambda^2(0)/lambda^2(T)$ can be approximated by a power-law $T$ dependence at low temperatures, indicating the robustness of strong momentum anisotropy in the superconducting gap $Delta(k)$. The power $alpha$ increases from $sim1$ with mass enhancement and approaches an unconventional exponent $alphasim 1.5$ in the heaviest CsFe$_2$As$_2$. This appears to be a hallmark of superconductors near antiferromagnetic quantum critical points, where the quasiparticles excited across the anisotropic $Delta(k)$ are significantly influenced by the momentum dependence of quantum critical fluctuations.
We present a calorimetric study on single crystals of Ca(Fe1-xCox)2As2 (x = 0, 0.032, 0.051, 0.056, 0.063, and 0.146). The combined first order spin-density wave/structural transition occurs in the parent CaFe2As2 compound at 168 K and gradually shif ts to lower temperature for low doping levels (x = 0.032 and x = 0.051). It is completely suppressed upon higher doping x = 0.056. Simultaneously, superconductivity appears at lower temperature with a transition temperature around Tc = 14.1 K for Ca(Fe0.937Co0.063)2As2. The phase diagram of Ca(Fe0.937Co0.063)2As2 has been derived and the upper critical field is found to be H(c) c2 = 11.5
Using polarized and unpolarized neutron scattering we show that interstitial Fe in superconducting Fe_{1+y}Te_{1-x}Se_x induces a magnetic Friedel-like oscillation that diffracts at Q_(in-plane)=(1/2,0) and involves >50 neighboring Fe sites. The inte rstitial >2 mu_B moment is surrounded by compensating ferromagnetic four spin clusters that may seed double stripe ordering in Fe_{1+y}Te. A semi-metallic 5-band model with (1/2,1/2) Fermi surface nesting and four fold symmetric super-exchange between interstitial Fe and two in-plane nearest neighbors largely accounts for the observed diffraction.
Inelastic neutron scattering measurements have been performed on underdoped Ba(Fe1-xCox)2As2 (x = 4.7%) where superconductivity and long-range antiferromagnetic (AFM) order coexist. The broad magnetic spectrum found in the normal state develops into a magnetic resonance feature below TC that has appreciable dispersion along c-axis with a bandwidth of 3-4 meV. This is in contrast to the optimally doped x = 8.0% composition, with no long-range AFM order, where the resonance exhibits a much weaker dispersion [see Lumsden et al. Phys. Rev. Lett. 102, 107005 (2009)]. The results suggest that the resonance dispersion arises from interlayer spin correlations present in the AFM ordered state.
The electronic and superconducting properties of Fe1-xSe single-crystal flakes grown hydrothermally are studied by the transport measurements under zero and high magnetic fields up to 38.5 T. The results contrast sharply with those previously reporte d for nematically ordered FeSe by chemical-vapor-transport (CVT) growth. No signature of the electronic nematicity, but an evident metal-to-nonmetal crossover with increasing temperature, is detected in the normal state of the present hydrothermal samples. Interestingly, a higher superconducting critical temperature Tc of 13.2 K is observed compared to a suppressed Tc of 9 K in the presence of the nematicity in the CVT FeSe. Moreover, the upper critical field in the zero-temperature limit is found to be isotropic with respect to the field direction and to reach a higher value of ~42 T, which breaks the Pauli limit by a factor of 1.8.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا