ﻻ يوجد ملخص باللغة العربية
Using a magnetic resonance force microscope (MRFM), the power emitted by a spin transfer nano-oscillator consisting of a normally magnetized Py$|$Cu$|$Py circular nanopillar is measured both in the autonomous and forced regimes. From the power behavior in the subcritical region of the autonomous dynamics, one obtains a quantitative measurement of the threshold current and of the noise level. Their field dependence directly yields both the spin torque efficiency acting on the thin layer and the nature of the mode which first auto-oscillates: the lowest energy, spatially most uniform spin-wave mode. From the MRFM behavior in the forced dynamics, it is then demonstrated that in order to phase-lock this auto-oscillating mode, the external source must have the same spatial symmetry as the mode profile, i.e., a uniform microwave field must be used rather than a microwave current flowing through the nanopillar.
We investigate the microwave characteristics of a spin transfer nano-oscillator (STNO) based on coupled vortices as a function of the perpendicular magnetic field $H_perp$. While the generation linewidth displays strong variations on $H_perp$ (from 4
The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive cu
A theoretical study of delayed feedback in spin-torque nano-oscillators is presented. A macrospin geometry is considered, where self-sustained oscillations are made possible by spin transfer torques associated with spin currents flowing perpendicular
Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here we demonstrate that thermal gradients
Using a three-dimensional focused-ion beam lithography process we have fabricated nanopillar devices which show spin transfer torque switching at zero external magnetic fields. Under a small in-plane external bias field, a field-dependent peak in the