ﻻ يوجد ملخص باللغة العربية
We present a Hamiltonian framework for higher-dimensional vortex filaments (or membranes) and vortex sheets as singular 2-forms with support of codimensions 2 and 1, respectively, i.e. singular elements of the dual to the Lie algebra of divergence-free vector fields. It turns out that the localized induction approximation (LIA) of the hydrodynamical Euler equation describes the skew-mean-curvature flow on vortex membranes of codimension 2 in any dimension, which generalizes the classical binormal, or vortex filament, equation in 3D. This framework also allows one to define the symplectic structures on the spaces of vortex sheets, which interpolate between the corresponding structures on vortex filaments and smooth vorticities.
We discuss a correspondence between certain contact pairs on the one hand, and certain locally conformally symplectic forms on the other. In particular, we characterize these structures through suspensions of contactomorphisms. If the contact pair is
Let X be a four-manifold with boundary three manifold M. We shall describe (i) a pre-symplectic structure on the space of connections of the trivial SU(n)-bundle over X that comes from the canonical symplectic structure on the cotangent bundle of the
We show that the exterior derivative operator on a symplectic manifold has a natural decomposition into two linear differential operators, analogous to the Dolbeault operators in complex geometry. These operators map primitive forms into primitive fo
We introduce filtered cohomologies of differential forms on symplectic manifolds. They generalize and include the cohomologies discussed in Paper I and II as a subset. The filtered cohomologies are finite-dimensional and can be associated with differ
This paper presents two existence h-principles, the first for conformal symplectic structures on closed manifolds, and the second for leafwise conformal symplectic structures on foliated manifolds with non empty boundary. The latter h-principle allow