ﻻ يوجد ملخص باللغة العربية
In order to develop an RF cavity that is applicable for a muon beam cooling channel, a new facility, called Mucool Test Area (MTA) has been built at Fermilab. MTA is a unique facility whose purpose is to test RF cavities in various conditions. There are 201 and 805 MHz high power sources, a 4-Tesla solenoid magnet, a cryogenic system including a Helium liquifier, an explosion proof apparatus to operate gaseous/liquid Hydrogen, and a beam transport line to send an intense H- beam from the Fermilab Linac accelerator to the MTA hall. Recent activities at MTA will be discussed in this document.
A CW-compatible, pulsed H- superconducting linac PIP-II is being planned to upgrade Fermilabs injection complex. To validate the front-end concept, a test accelerator (The PIP-II Injector Test, formerly known as PXIE) is under construction. The warm
Powered operation of Cryomodule 1 (CM-1) at the Fermilab SRF Beam Test Facility began in late 2010. Since then a series of tests first on the eight individual cavities and then the full cryomodule have been performed. We report on the results of thes
The High Intensity Neutrino Source (HINS) Six-Cavity Test has demonstrated the use of high power RF vector modulators to control multiple RF cavities driven by a single high power klystron to accelerate a non-relativistic beam. Installation of 6 cavi
SRF cavity quality factors can be accurately measured using RF-power based techniques only when the cavity is very close to critically coupled. This limitation is from systematic errors driven by non-ideal RF components. When the cavity is not close
The Advanced Superconducting Test Acccelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration sectio