ﻻ يوجد ملخص باللغة العربية
We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically-associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly-distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple planet systems orbiting the Kepler target star, but there are likely cases where (a) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (b) the planets orbit different stars within a binary/multiple star system. We use the low overall false positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely-packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets with periods ranging from 5.67 to 41 days.
The Kepler mission has discovered over 2500 exoplanet candidates in the first two years of spacecraft data, with approximately 40% of them in candidate multi-planet systems. The high rate of multiplicity combined with the low rate of identified false
We extend the statistical analysis of Lissauer et al. (2012, ApJ 750, 112), which demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) represent true transiting planets, and develop therefrom a procedur
Protoplanetary discs are now routinely observed and exoplanets, after the numerous indirect discoveries, are starting to be directly imaged. To better understand the planet formation process, the next step is the detection of forming planets or of si
NASAs Kepler Mission uses transit photometry to determine the frequency of earth-size planets in or near the habitable zone of Sun-like stars. The mission reached a milestone toward meeting that goal: the discovery of its first rocky planet, Kepler-1
In this letter we present an overview of the rich population of systems with multiple candidate transiting planets found in the first four months of Kepler data. The census of multiples includes 115 targets that show 2 candidate planets, 45 with 3, 8