ترغب بنشر مسار تعليمي؟ اضغط هنا

KEPLERs First Rocky Planet: Kepler-10b

187   0   0.0 ( 0 )
 نشر من قبل Natalie Batalha Dr.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NASAs Kepler Mission uses transit photometry to determine the frequency of earth-size planets in or near the habitable zone of Sun-like stars. The mission reached a milestone toward meeting that goal: the discovery of its first rocky planet, Kepler-10b. Two distinct sets of transit events were detected: 1) a 152 +/- 4 ppm dimming lasting 1.811 +/- 0.024 hours with ephemeris T[BJD]=2454964.57375+N*0.837495 days and 2) a 376 +/- 9 ppm dimming lasting 6.86 +/- 0.07 hours with ephemeris T[BJD]=2454971.6761+N*45.29485 days. Statistical tests on the photometric and pixel flux time series established the viability of the planet candidates triggering ground-based follow-up observations. Forty precision Doppler measurements were used to confirm that the short-period transit event is due to a planetary companion. The parent star is bright enough for asteroseismic analysis. Photometry was collected at 1-minute cadence for >4 months from which we detected 19 distinct pulsation frequencies. Modeling the frequencies resulted in precise knowledge of the fundamental stellar properties. Kepler-10 is a relatively old (11.9 +/- 4.5 Gyr) but otherwise Sun-like Main Sequence star with Teff=5627 +/- 44 K, Mstar=0.895 +/- 0.060 Msun, and Rstar=1.056 +/- 0.021 Rsun. Physical models simultaneously fit to the transit light curves and the precision Doppler measurements yielded tight constraints on the properties of Kepler-10b that speak to its rocky composition: Mpl=4.56 +/- 1.29 Mearth, Rpl=1.416 +/- 0.036 Rearth, and density=8.8 +/- 2.9 gcc. Kepler-10b is the smallest transiting exoplanet discovered to date.



قيم البحث

اقرأ أيضاً

Kepler-62f is the first exoplanet small enough to plausibly have a rocky composition orbiting within the habitable zone (HZ) discovered by the Kepler Mission. The planet is 1.4 times the size of the Earth and has an orbital period of 267 days. At the time of its discovery, it had the longest period of any small planet in the habitable zone of a multi-planet system. Because of its long period, only four transits were observed during Keplers interval of observations. It was initially missed by the Kepler pipeline, but the first three transits were identified by an independent search by Eric Agol, and it was identified as a planet candidate in subsequent Kepler catalogs. However in the latest catalog of exoplanets (Thompson et al., 2018), it is labeled as a false positive. Recent exoplanet catalogues have evolved from subjective classification to automatic classifications of planet candidates by algorithms (such as `Robovetter). While exceptionally useful for producing a uniform catalogue, these algorithms sometimes misclassify planet candidates as a false positive, as is the case of Kepler-62f. In particularly valuable cases, i.e., when a small planet has been found orbiting in the habitable zone (HZ), it is important to conduct comprehensive analyses of the data and classification protocols to provide the best estimate of the true status of the detection. In this paper we conduct such analyses and show that Kepler-62f is a true planet and not a false positive. The table of stellar and planet properties has been updated based on GAIA results.
HD 179070, aka Kepler-21, is a V = 8.25 F6IV star and the brightest exoplanet host discovered by Kepler. An early detailed analysis by Howell et al. (2012) of the first thirteen months (Q0 - Q5) of Kepler light curves revealed transits of a planetary companion, Kepler-21b, with a radius of about 1.60 +/- 0.04 R_earth and an orbital period of about 2.7857 days. However, they could not determine the mass of the planet from the initial radial velocity observations with Keck-HIRES, and were only able to impose a 2-sigma upper limit of 10 M_earth. Here we present results from the analysis of 82 new radial velocity observations of this system obtained with HARPS-N, together with the existing 14 HIRES data points. We detect the Doppler signal of Kepler-21b with a radial velocity semi-amplitude K = 2.00 +/- 0.65 m/s, which corresponds to a planetary mass of 5.1 +/- 1.7 M_earth. We also measure an improved radius for the planet of 1.639 (+0.019, -0.015) R_earth, in agreement with the radius reported by Howell et al. (2012). We conclude that Kepler-21b, with a density of 6.4 +/- 2.1 g/cm^3, belongs to the population of terrestrial planets with iron, magnesium silicate interiors, which have lost the majority of their envelope volatiles via stellar winds or gravitational escape. The radial velocity analysis presented in this paper serves as example of the type of analysis that will be necessary to confirm the masses of TESS small planet candidates.
Kepler-20 is a solar-type star (V = 12.5) hosting a compact system of five transiting planets, all packed within the orbital distance of Mercury in our own Solar System. A transition from rocky to gaseous planets with a planetary transition radius of ~1.6 REarth has recently been proposed by several publications in the literature (Rogers 2015;Weiss & Marcy 2014). Kepler-20b (Rp ~ 1.9 REarth) has a size beyond this transition radius, however previous mass measurements were not sufficiently precise to allow definite conclusions to be drawn regarding its composition. We present new mass measurements of three of the planets in the Kepler-20 system facilitated by 104 radial velocity measurements from the HARPS-N spectrograph and 30 archival Keck/HIRES observations, as well as an updated photometric analysis of the Kepler data and an asteroseismic analysis of the host star (MStar = 0.948+-0.051 Msun and Rstar = 0.964+-0.018 Rsun). Kepler-20b is a 1.868+0.066-0.034 REarth planet in a 3.7 day period with a mass of 9.70+1.41-1.44 MEarth resulting in a mean density of 8.2+1.5-1.3 g/cc indicating a rocky composition with an iron to silicate ratio consistent with that of the Earth. This makes Kepler-20b the most massive planet with a rocky composition found to date. Furthermore, we report the discovery of an additional non-transiting planet with a minimum mass of 19.96+3.08-3.61 MEarth and an orbital period of ~34 days in the gap between Kepler-20f (P ~ 11 days) and Kepler-20d (P ~ 78 days).
Kepler-454 (KOI-273) is a relatively bright (V = 11.69 mag), Sun-like starthat hosts a transiting planet candidate in a 10.6 d orbit. From spectroscopy, we estimate the stellar temperature to be 5687 +/- 50 K, its metallicity to be [m/H] = 0.32 +/- 0 .08, and the projected rotational velocity to be v sin i <2.4 km s-1. We combine these values with a study of the asteroseismic frequencies from short cadence Kepler data to estimate the stellar mass to be 1.028+0:04-0:03 M_Sun, the radius to be 1.066 +/- 0.012 R_Sun and the age to be 5.25+1:41-1:39 Gyr. We estimate the radius of the 10.6 d planet as 2.37 +/- 0.13 R_Earth. Using 63 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 36 observations made with the HIRES spectrograph at Keck Observatory, we measure the mass of this planet to be 6.8 +/- 1.4M_Earth. We also detect two additional non-transiting companions, a planet with a minimum mass of 4.46 +/- 0.12 M_J in a nearly circular 524 d orbit and a massive companion with a period >10 years and mass >12.1M_J . The twelve exoplanets with radii <2.7 R_Earth and precise mass measurements appear to fall into two populations, with those <1.6 R_Earth following an Earth-like composition curve and larger planets requiring a significant fraction of volatiles. With a density of 2.76 +/- 0.73 g cm-3, Kepler-454b lies near the mass transition between these two populations and requires the presence of volatiles and/or H/He gas.
The Kepler mission has made an important observation, the first detection of photons from a terrestrial planet by observing its phase curve (Kepler-10b). This opens a new field in exoplanet science: the possibility to get information about the atmosp here and surface of rocky planets, objects of prime interest. In this letter, we apply the Lava-ocean model to interpret the observed phase curve. The model, a planet with no atmosphere and a surface partially made of molten rocks, has been proposed for planets of the class of CoRoT-7b, i.e. rocky planets very close to their star (at few stellar radii). Kepler-10b is a typical member of this family. It predicts that the light from the planet has an important emission component in addition to the reflected one, even in the Kepler spectral band. Assuming an isotropical reflection of light by the planetary surface (Lambertian-like approximation), we find that a Bond albedo of sim50% can account for the observed amplitude of the phase curve, as opposed to a first attempt where an unusually high value was found. We propose a physical process to explain this still large value of the albedo. The overall interpretation can be tested in the future with instruments as JWST or EChO. Our model predicts a spectral dependence that is clearly distinguishable from that of purely reflected light, and from that of a planet at a uniform temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا