ﻻ يوجد ملخص باللغة العربية
Recently a {it local} true (completely gauge fixed) Hamiltonian for spherically symmetric collapse was derived in terms of Ashtekar variables. We show that such a local Hamiltonian follows directly from the geometrodynamics of gravity theories that obey a Birkhoff theorem and possess a mass function that is constant on the constraint surface in vacuum. In addition to clarifying the geometrical content, our approach has the advantage that it can be directly applied to a large class of spherically symmetric and 2D gravity theories, including $p$-th order Lovelock gravity in D dimensions. The resulting expression for the true local Hamiltonian is universal and remarkably simple in form.
We derive the Hamiltonian for spherically symmetric Lovelock gravity using the geometrodynamics approach pioneered by Kuchav{r} in the context of four-dimensional general relativity. When written in terms of the areal radius, the generalized Misner-S
The present work investigates the gravitational collapse of a perfect fluid in $f(R)$ gravity models. For a general $f(R)$ theory, it is shown analytically that a collapse is quite possible. The singularity formed as a result of the collapse is found
Based on the geometry of the codimension-2 surface in a general spherically symmetric spacetime, we give a quasi-local definition of a photon sphere as well as a photon surface. This new definition is the generalization of the one by Claudel, Virbhad
The present paper deals with the gravitational collapse of an inhomogeneous spherical star consisting of dust fluid in the background of dark energy components with linear equation of state. We discussed the development of apparent horizon to investi
We use the 1+3 frame formalism to write down the evolution equations for spherically symmetric models as a well-posed system of first order PDEs in two variables, suitable for numerical and qualitative analysis.