ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced star formation rates in AGN hosts with respect to inactive galaxies from PEP-Herschel observations

174   0   0.0 ( 0 )
 نشر من قبل Paola Santini
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare the average star formation (SF) activity in X-ray selected AGN hosts with mass-matched control inactive galaxies,including star forming and quiescent sources, at 0.5<z<2.5. Recent observations carried out by PACS, the 60-210um Herschel photometric camera, in GOODS-S, GOODS-N and COSMOS allow us to unbiasedly estimate the far-IR luminosity, and hence the SF properties, of the two samples. Accurate AGN host stellar masses are measured by decomposing their total emission into the stellar and nuclear components. We find a higher average SF activity in AGN hosts with respect to non-AGNs. The level of SF enhancement is modest (~0.26dex at ~3sigma) at low X-ray luminosities (Lx<~10^43.5erg/s) and more pronounced (0.56dex at >10sigma) for bright AGNs. However, when comparing to star forming galaxies only, AGN hosts are broadly consistent with the locus of their `main sequence. We investigate the relative far-IR luminosity distributions of active and inactive galaxies, and find a higher fraction of PACS detected, hence normal and highly star forming systems among AGN hosts. Although different interpretations are possible, we explain our findings as a consequence of a twofold AGN growth path: faint AGNs evolve through secular processes, with instantaneous AGN accretion not tightly linked to the current total SF in the host, while luminous AGNs co-evolve with their hosts through periods of enhanced AGN activity and SF, possibly through major mergers. While an increased SF with respect to non-AGNs of similar mass is expected in the latter, we interpret the modest SF offsets measured in low-Lx AGN hosts as either a) generated by non-synchronous accretion and SF histories in a merger scenario or b) due to possible connections between instantaneous SF and accretion that can be induced by smaller scale (non-major merger) mechanisms. Far-IR luminosity distributions favour the latter scenario.



قيم البحث

اقرأ أيضاً

186 - R. Nordon , D. Lutz , L. Shao 2010
The star formation rate (SFR) is a key parameter in the study of galaxy evolution. The accuracy of SFR measurements at z~2 has been questioned following a disagreement between observations and theoretical models. The latter predict SFRs at this redsh ift that are typically a factor 4 or more lower than the measurements. We present star-formation rates based on calorimetric measurements of the far-infrared (FIR) luminosities for massive 1.5<z<2.5, normal star-forming galaxies (SFGs), which do not depend on extinction corrections and/or extrapolations of spectral energy distributions. The measurements are based on observations in GOODS-N with the Photodetector Array Camera & Spectrometer (PACS) onboard Herschel, as part of the PACS Evolutionary Probe (PEP) project, that resolve for the first time individual SFGs at these redshifts at FIR wavelengths. We compare FIR-based SFRs to the more commonly used 24 micron and UV SFRs. We find that SFRs from 24 micron alone are higher by a factor of ~4-7.5 than the true SFRs. This overestimation depends on luminosity: gradually increasing for log L(24um)>12.2 L_sun. The SFGs and AGNs tend to exhibit the same 24 micron excess. The UV SFRs are in closer agreement with the FIR-based SFRs. Using a Calzetti UV extinction correction results in a mean excess of up to 0.3 dex and a scatter of 0.35 dex from the FIR SFRs. The previous UV SFRs are thus confirmed and the mean excess, while narrowing the gap, is insufficient to explain the discrepancy between the observed SFRs and simulation predictions.
202 - L. Shao , D. Lutz , R. Nordon 2010
Sensitive Herschel far-infrared observations can break degeneracies that were inherent to previous studies of star formation in high-z AGN hosts. Combining PACS 100 and 160um observations of the GOODS-N field with 2Msec Chandra data, we detect ~20% o f X-ray AGN individually at >3sig. The host far-infrared luminosity of AGN with L2-10~10^43erg/s increases with redshift by an order of magnitude from z=0 to z~1. In contrast, there is little dependence of far-infrared luminosity on AGN luminosity, for L2-10<~10^44erg/s AGN at z>~1. We do not find a dependence of far-infrared luminosity on X-ray obscuring column, for our sample which is dominated by L2-10<10^44erg/s AGN. In conjunction with properties of local and luminous high-z AGN, we interpret these results as reflecting the interplay between two paths of AGN/host coevolution. A correlation of AGN luminosity and host star formation is traced locally over a wide range of luminosities and also extends to luminous high z AGN. This correlation reflects an evolutionary connection, likely via merging. For lower AGN luminosities, star formation is similar to that in non-active massive galaxies and shows little dependence on AGN luminosity. The level of this secular, non-merger driven star formation increasingly dominates over the correlation at increasing redshift.
By making use of Herschel-PEP observations of the COSMOS and Extended Groth Strip fields, we have estimated the dependence of the clustering properties of FIR-selected sources on their 100um fluxes. Our analysis shows a tendency for the clustering st rength to decrease with limiting fluxes: r0(S100um >8 mJy)~4.3 Mpc and r0(S100um >5 mJy)~5.8 Mpc. These values convert into minimum halo masses Mmin~10^{11.6} Msun for sources brighter than 8 mJy and Mmin~10^{12.4} Msun for S100um > 5 mJy galaxies. We show such an increase of the clustering strength to be due to an intervening population of z~2 sources, which are very strongly clustered and whose relative contribution, equal to about 10% of the total counts at S100um > 2 mJy, rapidly decreases for brighter flux cuts. By removing such a contribution, we find that z <~ 1 FIR galaxies have approximately the same clustering properties, irrespective of their flux level. The above results were then used to investigate the intrinsic dependence on cosmic epoch of the clustering strength of dusty star-forming galaxies between z~0 and z~2.5. In order to remove any bias in the selection process, the adopted sample only includes galaxies observed at the same rest-frame wavelength, lambda~60 um, which have comparable luminosities and therefore star-formation rates (SFR>~100 Msun/yr). Our analysis shows that the same amount of (intense) star forming activity takes place in extremely different environments at the different cosmological epochs. For z<~1 the hosts of such star forming systems are small, Mmin~10^{11} Msun, isolated galaxies. High (z~2) redshift star formation instead seems to uniquely take place in extremely massive/cluster-like halos, Mmin~10^{13.5} Msun, which are associated with the highest peaks of the density fluctuation field at those epochs. (abridged)
We investigate the location of an ultra-hard X-ray selected sample of AGN from the Swift Burst Alert Telescope (BAT) catalog with respect to the main sequence (MS) of star-forming galaxies using Herschel-based measurements of the star formation rate (SFR) and stellar mass (mstar) from Sloan Digital Sky Survey (SDSS) photometry where the AGN contribution has been carefully removed. We construct the MS with galaxies from the Herschel Reference Survey and Herschel Stripe 82 Survey using the exact same methods to measure the SFR and mstar{} as the Swift/BAT AGN. We find a large fraction of the Swift/BAT AGN lie below the MS indicating decreased specific SFR (sSFR) compared to non-AGN galaxies. The Swift/BAT AGN are then compared to a high-mass galaxy sample (COLD GASS), where we find a similarity between the AGN in COLD GASS and the Swift/BAT AGN. Both samples of AGN lie firmly between star-forming galaxies on the MS and quiescent galaxies far below the MS. However, we find no relationship between the X-ray luminosity and distance from the MS. While the morphological distribution of the BAT AGN is more similar to star-forming galaxies, the sSFR of each morphology is more similar to the COLD GASS AGN. The merger fraction in the BAT AGN is much higher than the COLD GASS AGN and star-forming galaxies and is related to distance from the MS. These results support a model in which bright AGN tend to be in high mass star-forming galaxies in the process of quenching which eventually starves the supermassive black hole itself.
Models of galaxy evolution assume some connection between the AGN and star formation activity in galaxies. We use the multi-wavelength information of the CDFS to assess this issue. We select the AGNs from the 3Ms XMM-Newton survey and measure the sta r-formation rates of their hosts using data that probe rest-frame wavelengths longward of 20 um. Star-formation rates are obtained from spectral energy distribution fits, identifying and subtracting an AGN component. We divide the star-formation rates by the stellar masses of the hosts to derive specific star-formation rates (sSFR) and find evidence for a positive correlation between the AGN activity (proxied by the X-ray luminosity) and the sSFR for the most active systems with X-ray luminosities exceeding Lx=10^43 erg/s and redshifts z~1. We do not find evidence for such a correlation for lower luminosity systems or those at lower redshifts. We do not find any correlation between the SFR (or the sSFR) and the X-ray absorption derived from high-quality XMM-Newton spectra either, showing that the absorption is likely to be linked to the nuclear region rather than the host, while the star-formation is not nuclear. Comparing the sSFR of the hosts to the characteristic sSFR of star-forming galaxies at the same redshift we find that the AGNs reside mostly in main-sequence and starburst hosts, reflecting the AGN - sSFR connection. Limiting our analysis to the highest X-ray luminosity AGNs (X-ray QSOs with Lx>10^44 erg/s), we find that the highest-redshift QSOs (with z>2) reside predominantly in starburst hosts, with an average sSFR more than double that of the main sequence, and we find a few cases of QSOs at z~1.5 with specific star-formation rates compatible with the main-sequence, or even in the quiescent region. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا