ترغب بنشر مسار تعليمي؟ اضغط هنا

Holomorphic GL(2)-geometry on compact complex manifolds

89   0   0.0 ( 0 )
 نشر من قبل Sorin Dumitrescu
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study holomorphic GL(2) and SL(2) geometries on compact complex manifolds. We show that a compact Kahler manifold of complex even dimension higher than two admitting a holomorphic GL(2)-geometry is covered by a compact complex torus. We classify compact Kahler-Einstein manifolds and Fano manifolds bearing holomorphic GL(2)-geometries. Among the compact Kahler-Einstein manifolds we prove that the only examples bearing holomorphic GL(2)-geometry are those covered by compact complex tori, the three dimensional quadric and those covered by the three dimensional Lie ball (the non compact dual of the quadric).



قيم البحث

اقرأ أيضاً

We prove that a holomorphic projective connection on a complex projective threefold is either flat, or it is a translation invariant holomorphic projective connection on an abelian threefold. In the second case, a generic translation invariant holomo rphic affine connection on the abelian variety is not projectively flat. We also prove that a simply connected compact complex threefold with trivial canonical line bundle does not admit any holomorphic projective connection.
This is a survey paper dealing with holomorphic G-structures and holomorphic Cartan geometries on compact complex manifolds. Our emphasis is on the foliated case: holomorphic foliations with transverse (branched or generalized) holomorphic Cartan geometries.
72 - D. Kotschick , D.K. Thung 2019
We discuss the complex geometry of two complex five-dimensional Kahler manifolds which are homogeneous under the exceptional Lie group $G_2$. For one of these manifolds rigidity of the complex structure among all Kahlerian complex structures was prov ed by Brieskorn, for the other one we prove it here. We relate the Kahler assumption in Brieskorns theorem to the question of existence of a complex structure on the six-dimensional sphere, and we compute the Chern numbers of all $G_2$-invariant almost complex structures on these manifolds.
166 - Hiroki Yagisita 2018
An n-dimensional complex manifold is a manifold by biholomorphic mappings between open sets of the finite direct product of the complex number field. On the other hand, when A is a commutative Banach algebra, Lorch gave a definition that an A-valued function on an open set of A is holomorphic. The definition of a holomorphic function by Lorch can be straightforwardly generalized to an A-valued function on an open set of the finite direct product of A. Therefore, a manifold modeled on the finite direct product of A (an n-dimensional A-manifold) is easily defined. However, in my opinion, it seems that so many nontrivial examples were not known (including the case of n=1, that is, Riemann surfaces). By the way, if X is a compact Hausdorff space, then the algebra C(X) of all complex valued continuous functions on X is the most basic example of a commutative Banach algebra (furthermore, a commutative C*-algebra). In this note, we see that if the set of all continuous cross sections of a continuous family M of compact complex manifolds (a topological deformation M of compact complex analytic structures) on X is denoted by G(M), then the structure of a C(X)-manifold modeled on the C(X)-modules of all continuous cross sections of complex vector bundles on X is introduced into G(M). Therefore, especially, if X is contractible, then G(M) is a finite-dimensional C(X)-manifold.
In this paper, we develop holomorphic Jacobi structures. Holomorphic Jacobi manifolds are in one-to-one correspondence with certain homogeneous holomorphic Poisson manifolds. Furthermore, holomorphic Poisson manifolds can be looked at as special case s of holomorphic Jacobi manifolds. We show that holomorphic Jacobi structures yield a much richer framework than that of holomorphic Poisson structures. We also discuss the relationship between holomorphic Jacobi structures, generalized contact bundles and Jacobi-Nijenhuis structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا