ترغب بنشر مسار تعليمي؟ اضغط هنا

A Massive Data Parallel Computational Framework for Petascale/Exascale Hybrid Computer Systems

177   0   0.0 ( 0 )
 نشر من قبل Erik Schnetter
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Heterogeneous systems are becoming more common on High Performance Computing (HPC) systems. Even using tools like CUDA and OpenCL it is a non-trivial task to obtain optimal performance on the GPU. Approaches to simplifying this task include Merge (a library based framework for heterogeneous multi-core systems), Zippy (a framework for parallel execution of codes on multiple GPUs), BSGP (a new programming language for general purpose computation on the GPU) and CUDA-lite (an enhancement to CUDA that transforms code based on annotations). In addition, efforts are underway to improve compiler tools for automatic parallelization and optimization of affine loop nests for GPUs and for automatic translation of OpenMP parallelized codes to CUDA. In this paper we present an alternative approach: a new computational framework for the development of massively data parallel scientific codes applications suitable for use on such petascale/exascale hybrid systems built upon the highly scalable Cactus framework. As the first non-trivial demonstration of its usefulness, we successfully developed a new 3D CFD code that achieves improved performance.



قيم البحث

اقرأ أيضاً

Computational science is changing to be data intensive. Super-Computers must be balanced systems; not just CPU farms but also petascale IO and networking arrays. Anyone building CyberInfrastructure should allocate resources to support a balanced Tier-1 through Tier-3 design.
175 - Yuping Fan 2021
High-performance computing (HPC) is undergoing significant changes. Next generation HPC systems are equipped with diverse global and local resources, such as I/O burst buffer resources, memory resources (e.g., on-chip and off-chip RAM, external RAM/N VRA), network resources, and possibly other resources. Job schedulers play a crucial role in efficient use of resources. However, traditional job schedulers are single-objective and fail to efficient use of other resources. In this paper, we propose ROME, a novel multi-dimensional job scheduling framework to explore potential tradeoffs among multiple resources and provides balanced scheduling decision. Our design leverages genetic algorithm as the multi-dimensional optimization engine to generate fast scheduling decision and to support effective resource utilization.
We have extended the Falkon lightweight task execution framework to make loosely coupled programming on petascale systems a practical and useful programming model. This work studies and measures the performance factors involved in applying this appro ach to enable the use of petascale systems by a broader user community, and with greater ease. Our work enables the execution of highly parallel computations composed of loosely coupled serial jobs with no modifications to the respective applications. This approach allows a new-and potentially far larger-class of applications to leverage petascale systems, such as the IBM Blue Gene/P supercomputer. We present the challenges of I/O performance encountered in making this model practical, and show results using both microbenchmarks and real applications from two domains: economic energy modeling and molecular dynamics. Our benchmarks show that we can scale up to 160K processor-cores with high efficiency, and can achieve sustained execution rates of thousands of tasks per second.
We aim to implement a Big Data/Extreme Computing (BDEC) capable system infrastructure as we head towards the era of Exascale computing - termed SAGE (Percipient StorAGe for Exascale Data Centric Computing). The SAGE system will be capable of storing and processing immense volumes of data at the Exascale regime, and provide the capability for Exascale class applications to use such a storage infrastructure. SAGE addresses the increasing overlaps between Big Data Analysis and HPC in an era of next-generation data centric computing that has developed due to the proliferation of massive data sources, such as large, dispersed scientific instruments and sensors, whose data needs to be processed, analyzed and integrated into simulations to derive scientific and innovative insights. Indeed, Exascale I/O, as a problem that has not been sufficiently dealt with for simulation codes, is appropriately addressed by the SAGE platform. The objective of this paper is to discuss the software architecture of the SAGE system and look at early results we have obtained employing some of its key methodologies, as the system continues to evolve.
Cloud computing refers to maximizing efficiency by sharing computational and storage resources, while data-parallel systems exploit the resources available in the cloud to perform parallel transformations over large amounts of data. In the same line, considerable emphasis has been recently given to two apparently disjoint research topics: data-parallel, and eventually consistent, distributed systems. Declarative networking has been recently proposed to ease the task of programming in the cloud, by allowing the programmer to express only the desired result and leave the implementation details to the responsibility of the run-time system. In this context, we propose a study on a logic-programming-based computational model for eventually consistent, data-parallel systems, the keystone of which is provided by the recent finding that the class of programs that can be computed in an eventually consistent, coordination-free way is that of monotonic programs. This principle is called CALM and has been proven by Ameloot et al. for distributed, asynchronous settings. We advocate that CALM should be employed as a basic theoretical tool also for data-parallel systems, wherein computation usually proceeds synchronously in rounds and where communication is assumed to be reliable. It is general opinion that coordination-freedom can be seen as a major discriminant factor. In this work we make the case that the current form of CALM does not hold in general for data-parallel systems, and show how, using novel techniques, the satisfiability of the CALM principle can still be obtained although just for the subclass of programs called connected monotonic queries. We complete the study with considerations on the relationships between our model and the one employed by Ameloot et al., showing that our techniques subsume the latter when the synchronization constraints imposed on the system are loosened.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا