ﻻ يوجد ملخص باللغة العربية
We have extended the Falkon lightweight task execution framework to make loosely coupled programming on petascale systems a practical and useful programming model. This work studies and measures the performance factors involved in applying this approach to enable the use of petascale systems by a broader user community, and with greater ease. Our work enables the execution of highly parallel computations composed of loosely coupled serial jobs with no modifications to the respective applications. This approach allows a new-and potentially far larger-class of applications to leverage petascale systems, such as the IBM Blue Gene/P supercomputer. We present the challenges of I/O performance encountered in making this model practical, and show results using both microbenchmarks and real applications from two domains: economic energy modeling and molecular dynamics. Our benchmarks show that we can scale up to 160K processor-cores with high efficiency, and can achieve sustained execution rates of thousands of tasks per second.
Loosely coupled programming is a powerful paradigm for rapidly creating higher-level applications from scientific programs on petascale systems, typically using scripting languages. This paradigm is a form of many-task computing (MTC) which focuses o
Our work addresses the enabling of the execution of highly parallel computations composed of loosely coupled serial jobs with no modifications to the respective applications, on large-scale systems. This approach allows new-and potentially far larger
In order to achieve near-time insights, scientific workflows tend to be organized in a flexible and dynamic way. Data-driven triggering of tasks has been explored as a way to support workflows that evolve based on the data. However, the overhead intr
Heterogeneous systems are becoming more common on High Performance Computing (HPC) systems. Even using tools like CUDA and OpenCL it is a non-trivial task to obtain optimal performance on the GPU. Approaches to simplifying this task include Merge (a
Computational science is changing to be data intensive. Super-Computers must be balanced systems; not just CPU farms but also petascale IO and networking arrays. Anyone building CyberInfrastructure should allocate resources to support a balanced Tier-1 through Tier-3 design.