ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum uncertainty relation saturated by the eigenstates of the harmonic oscillator

164   0   0.0 ( 0 )
 نشر من قبل Aikaterini Mandilara
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We re-derive the Schr{o}dinger-Robertson uncertainty principle for the position and momentum of a quantum particle. Our derivation does not directly employ commutation relations, but works by reduction to an eigenvalue problem related to the harmonic oscillator, which can then be further exploited to find a larger class of constrained uncertainty relations. We derive an uncertainty relation under the constraint of a fixed degree of Gaussianity and prove that, remarkably, it is saturated by all eigenstates of the harmonic oscillator. This goes beyond the common knowledge that the (Gaussian) ground state of the harmonic oscillator saturates the uncertainty relation.



قيم البحث

اقرأ أيضاً

239 - K. Gemba , Z. T. Hlousek , Z. Papp 2007
In quantum mechanics with minimal length uncertainty relations the Heisenberg-Weyl algebra of the one-dimensional harmonic oscillator is a deformed SU(1,1) algebra. The eigenvalues and eigenstates are constructed algebraically and they form the infin ite-dimensional representation of the deformed SU(1,1) algebra. Our construction is independent of prior knowledge of the exact solution of the Schrodinger equation of the model. The approach can be generalized to the $D$-dimensional oscillator with non-commuting coordinates.
60 - Jan Govaerts 2018
This contribution to the present Workshop Proceedings outlines a general programme for identifying geometric structures--out of which to possibly recover quantum dynamics as well--associated to the manifold in Hilbert space of the quantum states that saturate the Schrodinger-Robertson uncertainty relation associated to a specific set of quantum observables which characterise a given quantum system and its dynamics. The first step in such an exploration is addressed herein in the case of the observables Q and P of the Heisenberg algebra for a single degree of freedom system. The corresponding saturating states are the well known general squeezed states, whose properties are reviewed and discussed in detail together with some original results, in preparation of a study deferred to a separated analysis of their quantum geometry and of the corresponding path integral representation over such states.
We study a pair of canonoid (fouled) Hamiltonians of the harmonic oscillator which provide, at the classical level, the same equation of motion as the conventional Hamiltonian. These Hamiltonians, say $K_{1}$ and $K_{2}$, result to be explicitly time -dependent and can be expressed as a formal rotation of two cubic polynomial functions, $H_{1}$ and $H_{2}$, of the canonical variables (q,p). We investigate the role of these fouled Hamiltonians at the quantum level. Adopting a canonical quantization procedure, we construct some quantum models and analyze the related eigenvalue equations. One of these models is described by a Hamiltonian admitting infinite self-adjoint extensions, each of them has a discrete spectrum on the real line. A self-adjoint extension is fixed by choosing the spectral parameter $epsilon$ of the associated eigenvalue equation equal to zero. The spectral problem is discussed in the context of three different representations. For $epsilon =0$, the eigenvalue equation is exactly solved in all these representations, in which square-integrable solutions are explicity found. A set of constants of motion corresponding to these quantum models is also obtained. Furthermore, the algebraic structure underlying the quantum models is explored. This turns out to be a nonlinear (quadratic) algebra, which could be applied for the determination of approximate solutions to the eigenvalue equations.
We consider a thermal quantum harmonic oscillator weakly coupled to a heat bath at a different temperature. We analytically study the quantum heat exchange statistics between the two systems using the quantum-optical master equation. We exactly compu te the characteristic function of the heat distribution and show that it verifies the Jarzynski-Wojcik fluctuation theorem. We further evaluate the heat probability density in the limit of long thermalization times, both in the low and high temperature regimes, and investigate its time evolution by calculating its first two cumulants.
The literature on the exponential Fourier approach to the one-dimensional quantum harmonic oscillator problem is revised and criticized. It is shown that the solution of this problem has been built on faulty premises. The problem is revisited via the Fourier sine and cosine transform method and the stationary states are properly determined by requiring definite parity and square-integrable eigenfunctions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا