ﻻ يوجد ملخص باللغة العربية
In quantum mechanics with minimal length uncertainty relations the Heisenberg-Weyl algebra of the one-dimensional harmonic oscillator is a deformed SU(1,1) algebra. The eigenvalues and eigenstates are constructed algebraically and they form the infinite-dimensional representation of the deformed SU(1,1) algebra. Our construction is independent of prior knowledge of the exact solution of the Schrodinger equation of the model. The approach can be generalized to the $D$-dimensional oscillator with non-commuting coordinates.
Using operator ordering techniques based on BCH-like relations of the su(1,1) Lie algebra and a time-splitting approach,we present an alternative method of solving the dynamics of a time-dependent quantum harmonic oscillator for any initial state. We
We consider a harmonic oscillator (HO) with a time dependent frequency which undergoes two successive abrupt changes. By assumption, the HO starts in its fundamental state with frequency omega_{0}, then, at t = 0, its frequency suddenly increases to
We solve the generalized relativistic harmonic oscillator in 1+1 dimensions in the presence of a minimal length. Using the momentum space representation, we explore all the possible signs of the potentials and discuss their bound-state solutions for
In the framework of the generalized uncertainty principle, the position and momentum operators obey the modified commutation relation $[X,P]=ihbarleft(1+beta P^2right)$ where $beta$ is the deformation parameter. Since the validity of the uncertainty
We re-derive the Schr{o}dinger-Robertson uncertainty principle for the position and momentum of a quantum particle. Our derivation does not directly employ commutation relations, but works by reduction to an eigenvalue problem related to the harmonic