ﻻ يوجد ملخص باللغة العربية
We present a fit to precision electroweak data in the standard model extended by an additional vector boson, Z, with suppressed couplings to the electron compared to the Z boson, with couplings to the b-quark, and with mass close to the mass of the Z boson. This scenario provides an excellent fit to forward-backward asymmetry of the b-quark measured on the Z-pole and pm 2 GeV off the Z-pole, and to lepton asymmetry, A_e, obtained from the measurement of left-right asymmetry for hadronic final states, and thus it removes the tension in the determination of the weak mixing angle from these two measurements. It also leads to a significant improvement in the total hadronic cross section on the Z-pole and R_b measured at energies above the Z-pole. We explore in detail properties of the Z needed to explain the data and present a model for Z with required couplings. The model preserves standard model Yukawa couplings, it is anomaly free and can be embedded into grand unified theories. It allows a choice of parameters that does not generate any flavor violating couplings of the Z to standard model fermions. Out of standard model couplings, it only negligibly modifies the left-handed bottom quark coupling to the Z boson and the 3rd column of the CKM matrix. Modifications of standard model couplings in the charged lepton sector are also negligible. It predicts an additional down type quark, D, with mass in a few hundred GeV range, and an extra lepton doublet, L, possibly much heavier than the D quark. We discuss signatures of the Z at the Large Hadron Collider and calculate the Zb production cross section which is the dominant production mechanism for the Z.
We show that a Z with suppressed couplings to the electron compared to the Z-boson, with couplings to the b-quark, and with a mass close to the mass of the Z-boson, provides an excellent fit to forward-backward asymmetry of the b-quark and R_b measur
We demonstrate how S-matrix poles manifest themselves as the physical spectrum near the upper threshold in the context of the two-channel uniformized Mittag-Leffler expansion, an expression written as a sum of pole terms under an appropriate variable
An attempt has been made to address the 3sigma anomaly of the forward-backward asymmetry of b quark in LEP data via an unparticle sector. For most part of the parameter space except certain particular regions, the anomaly could not be explained away
We explore the physics of a new neutral gauge boson, ($Z^prime$), coupling to only third-generation particles with a mass near the electroweak gauge boson mass poles. A $Z^prime$ boson produced by top quarks and decaying to tau leptons is considered.
We compute the next-to-leading order QCD and electroweak corrections to $Z$ and $W$ pole observables using the dimension-6 Standard Model effective field theory and present numerical results that can easily be included in global fitting programs. Lim