ﻻ يوجد ملخص باللغة العربية
We compute the next-to-leading order QCD and electroweak corrections to $Z$ and $W$ pole observables using the dimension-6 Standard Model effective field theory and present numerical results that can easily be included in global fitting programs. Limits on SMEFT coefficient functions are presented at leading order and at next-to-leading order under several assumptions.
Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of s
The LHC enters era of the Standard Model Z-boson couplings precise measurements, to match precision of LEP. The calculations of electroweak (EW) corrections in the Monte Carlo generators become of relevance. Precise predictions of Z-boson production
We revisit electroweak radiative corrections to Standard Model Effective Field Theory (SMEFT) operators which are relevant for the $B$-meson semileptonic decays. The one-loop matching formulae onto the low-energy effective field theory are provided w
We investigate the role of anomalous gauge boson and fermion couplings on the production of $WZ$ and $W^+W^-$ pairs at the LHC to NLO QCD in the Standard Model effective field theory, including dimension-6 operators. Our results are implemented in a
The next-to-leading-order electroweak corrections to $ppto l^+l^-/bar u u+gamma+X$ production, including all off-shell effects of intermediate Z bosons in the complex-mass scheme, are calculated for LHC energies, revealing the typically expected larg