ﻻ يوجد ملخص باللغة العربية
The topological filtration of interacting RNA complexes is studied and the role is analyzed of certain diagrams called irreducible shadows, which form suitable building blocks for more general structures. We prove that for two interacting RNAs, called interaction structures, there exist for fixed genus only finitely many irreducible shadows. This implies that for fixed genus there are only finitely many classes of interaction structures. In particular the simplest case of genus zero already provides the formalism for certain types of structures that occur in nature and are not covered by other filtrations. This case of genus zero interaction structures is already of practical interest, is studied here in detail and found to be expressed by a multiple context-free grammar extending the usual one for RNA secondary structures. We show that in $O(n^6)$ time and $O(n^4)$ space complexity, this grammar for genus zero interaction structures provides not only minimum free energy solutions but also the complete partition function and base pairing probabilities.
RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA mo
In this paper we study $k$-noncrossing, canonical RNA pseudoknot structures with minimum arc-length $ge 4$. Let ${sf T}_{k,sigma}^{[4]} (n)$ denote the number of these structures. We derive exact enumeration results by computing the generating functi
A topological RNA structure is derived from a diagram and its shape is obtained by collapsing the stacks of the structure into single arcs and by removing any arcs of length one. Shapes contain key topological, information and for fixed topological g
In this paper we study properties of topological RNA structures, i.e.~RNA contact structures with cross-serial interactions that are filtered by their topological genus. RNA secondary structures within this framework are topological structures having
In this paper we study the distribution of stacks in $k$-noncrossing, $tau$-canonical RNA pseudoknot structures ($<k,tau> $-structures). An RNA structure is called $k$-noncrossing if it has no more than $k-1$ mutually crossing arcs and $tau$-canonica