ترغب بنشر مسار تعليمي؟ اضغط هنا

Combinatorics of RNA-RNA interaction

64   0   0.0 ( 0 )
 نشر من قبل Thomas Li
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure means that in a diagram representation the intramolecular bonds of each partner are pseudoknot-free, that the intermolecular binding pairs are noncrossing, and that there is no so-called ``zig-zag configuration. This paper presents the combinatorics of RNA interaction structures including their generating function, singularity analysis as well as explicit recurrence relations. In particular, our results imply simple asymptotic formulas for the number of joint structures.

قيم البحث

اقرأ أيضاً

The topological filtration of interacting RNA complexes is studied and the role is analyzed of certain diagrams called irreducible shadows, which form suitable building blocks for more general structures. We prove that for two interacting RNAs, calle d interaction structures, there exist for fixed genus only finitely many irreducible shadows. This implies that for fixed genus there are only finitely many classes of interaction structures. In particular the simplest case of genus zero already provides the formalism for certain types of structures that occur in nature and are not covered by other filtrations. This case of genus zero interaction structures is already of practical interest, is studied here in detail and found to be expressed by a multiple context-free grammar extending the usual one for RNA secondary structures. We show that in $O(n^6)$ time and $O(n^4)$ space complexity, this grammar for genus zero interaction structures provides not only minimum free energy solutions but also the complete partition function and base pairing probabilities.
We construct a minimalist model of RNA secondary-structure formation and use it to study the mapping from sequence to structure. There are strong, qualitative differences between two-letter and four or six-letter alphabets. With only two kinds of bas es, there are many alternate folding configurations, yielding thermodynamically stable ground-states only for a small set of structures of high designability, i.e., total number of associated sequences. In contrast, sequences made from four bases, as found in nature, or six bases have far fewer competing folding configurations, resulting in a much greater average stability of the ground state.
In this paper we show how to express RNA tertiary interactions via the concepts of tangled diagrams. Tangled diagrams allow to formulate RNA base triples and pseudoknot-interactions and to control the maximum number of mutually crossing arcs. In part icular we study two subsets of tangled diagrams: 3-noncrossing tangled-diagrams with $ell$ vertices of degree two and 2-regular, 3-noncrossing partitions (i.e. without arcs of the form $(i,i+1)$). Our main result is an asymptotic formula for the number of 2-regular, 3-noncrossing partitions, denoted by $p_{3,2}(n)$, 3-noncrossing partitions over $[n]$. The asymptotic formula is derived by the analytic theory of singular difference equations due to Birkhoff-Trjitzinsky. Explicitly, we prove the formula $p_{3,2}(n+1)sim K 8^{n}n^{-7}(1+c_{1}/n+c_{2}/n^2+c_3/n^3)$ where $K,c_i$, $i=1,2,3$ are constants.
The ongoing effort to detect and characterize physical entanglement in biopolymers has so far established that knots are present in many globular proteins and also abound in viral DNA packaged inside bacteriophages. RNA molecules, on the other hand, have not yet been systematically screened for the occurrence of physical knots. We have accordingly undertaken the systematic profiling of the ~6,000 RNA structures present in the protein data bank. The search identified no more than three deeply-knotted RNA molecules. These are ribosomal RNAs solved by cryo-em and consist of about 3,000 nucleotides. Compared to the case of proteins and viral DNA, the observed incidence of RNA knots is therefore practically negligible. This suggests that either evolutionary selection, or thermodynamic and kinetic folding mechanisms act towards minimizing the entanglement of RNA to an extent that is unparalleled by other types of biomolecules. The properties of the three observed RNA knotting patterns provide valuable clues for designing RNA sequences capable of self-tying in a twist-knot fold.
We present a novel topological classification of RNA secondary structures with pseudoknots. It is based on the topological genus of the circular diagram associated to the RNA base-pair structure. The genus is a positive integer number, whose value qu antifies the topological complexity of the folded RNA structure. In such a representation, planar diagrams correspond to pure RNA secondary structures and have zero genus, whereas non planar diagrams correspond to pseudoknotted structures and have higher genus. We analyze real RNA structures from the databases wwPDB and Pseudobase, and classify them according to their topological genus. We compare the results of our statistical survey with existing theoretical and numerical models. We also discuss possible applications of this classification and show how it can be used for identifying new RNA structural motifs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا