ترغب بنشر مسار تعليمي؟ اضغط هنا

Initial states and infrared physics in locally de Sitter spacetime

182   0   0.0 ( 0 )
 نشر من قبل David A. Lowe
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The long wavelength physics in a de Sitter region depends on the initial quantum state. While such long wavelength physics is under control for massive fields near the Hartle-Hawking vacuum state, such initial states make unnatural assumptions about initial data outside the region of causal contact of a local observer. We argue that a reasonable approximation to a maximum entropy state, one that makes minimal assumptions outside an observers horizon volume, is one where a cutoff is placed on a surface bounded by timelike geodesics, just outside the horizon. For sufficiently early times, such a cutoff induces secular logarithmic divergences with the expansion of the region. For massive fields, these effects sum to finite corrections at sufficiently late times. The difference between the cutoff correlators and Hartle-Hawking correlators provides a measure of the theoretical uncertainty due to lack of knowledge of the initial state in causally disconnected regions. These differences are negligible for primordial inflation, but can become significant during epochs with very long-lived de Sitter regions, such as we may be entering now.



قيم البحث

اقرأ أيضاً

108 - Mehrdad Mirbabayi 2019
Inertial observers in de Sitter are surrounded by a horizon and see thermal fluctuations. To them, a massless scalar field appears to follow a random motion but any attractive potential, no matter how weak, will eventually stabilize the field. We stu dy this thermalization process in the static patch (the spacetime region accessible to an individual observer) via a truncation to the low frequency spectrum. We focus on the distribution of the field averaged over a subhorizon region. At timescales much longer than the inverse temperature and to leading order in the coupling, we find the evolution to be Markovian, governed by the same Fokker-Planck equation that arises when the theory is studied in the inflationary setup.
In the setup of ghost condensation model the generalized second law of black hole thermodynamics can be respected under a radiatively stable assumption that couplings between the field responsible for ghost condensate and matter fields such as those in the Standard Model are suppressed by the Planck scale. Since not only black holes but also cosmology are expected to play important roles towards our better understanding of gravity, we consider a cosmological setup to test the theory of ghost condensation. In particular we shall show that the de Sitter entropy bound proposed by Arkani-Hamed, et.al. is satisfied if ghost inflation happened in the early epoch of our universe and if there remains a tiny positive cosmological constant in the future infinity. We then propose a notion of cosmological Page time after inflation.
135 - Marco Scalisi 2015
We provide a unified description of cosmological $alpha$-attractors and late-time acceleration, in excellent agreement with the latest Planck data. Our construction involves two superfields playing distinctive roles: one is the dynamical field and it s evolution determines inflation and dark energy, the other is nilpotent and responsible for a landscape of vacua and supersymmetry breaking. We prove that the attractor nature of the theory is enhanced when combining the two sectors: cosmological attractors are very stable with respect to any possible value of the cosmological constant and, interestingly, to any generic coupling of the inflationary sector with the field responsible for uplifting. Finally, as related result, we show how specific couplings generate an arbitrary inflaton potential in a supergravity framework with varying Kahler curvature.
115 - Alek Bedroya 2020
Motivated by the coincidence of scrambling time in de Sitter and maximum lifetime given by the $textit{Trans-Planckian Censorship Conjecture}$ (TCC), we study the relation between the de Sitter complementarity and the Swampland conditions. We study t hermalization in de Sitter space from different perspectives and show that TCC implies de Sitter space cannot live long enough to be considered a thermal background. We also revisit $alpha$-vacua in light of this work and show that TCC imposes multiple initial condition/fine-tuning problems on any conventional inflationary scenario.
Calculating the quantum evolution of a de Sitter universe on superhorizon scales is notoriously difficult. To address this challenge, we introduce the Soft de Sitter Effective Theory (SdSET). This framework holds for superhorizon modes whose comoving momentum is far below the UV scale, which is set by the inverse comoving horizon. The SdSET is formulated using the same approach that yields the Heavy Quark Effective Theory. The degrees of freedom that capture the long wavelength dynamics are identified with the growing and decaying solutions to the equations of motion. The operator expansion is organized using a power counting scheme, and loops can be regulated while respecting the low energy symmetries. For massive quantum fields in a fixed de Sitter background, power counting implies that all interactions beyond the horizon are irrelevant. Alternatively, if the fields are very light, the leading interactions are at most marginal, and resumming the associated logarithms using (dynamical) renormalization group techniques yields the evolution equation for canonical stochastic inflation. The SdSET is also applicable to models where gravity is dynamical, including inflation. In this case, diffeomorphism invariance ensures that all interactions are irrelevant, trivially implying the all-orders conservation of adiabatic density fluctuations and gravitational waves. We briefly touch on the application to slow-roll eternal inflation by identifying novel relevant operators. This work serves to demystify many aspects of perturbation theory outside the horizon, and has a variety of applications to problems of cosmological interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا