ترغب بنشر مسار تعليمي؟ اضغط هنا

Soft de Sitter Effective Theory

88   0   0.0 ( 0 )
 نشر من قبل Timothy Cohen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Calculating the quantum evolution of a de Sitter universe on superhorizon scales is notoriously difficult. To address this challenge, we introduce the Soft de Sitter Effective Theory (SdSET). This framework holds for superhorizon modes whose comoving momentum is far below the UV scale, which is set by the inverse comoving horizon. The SdSET is formulated using the same approach that yields the Heavy Quark Effective Theory. The degrees of freedom that capture the long wavelength dynamics are identified with the growing and decaying solutions to the equations of motion. The operator expansion is organized using a power counting scheme, and loops can be regulated while respecting the low energy symmetries. For massive quantum fields in a fixed de Sitter background, power counting implies that all interactions beyond the horizon are irrelevant. Alternatively, if the fields are very light, the leading interactions are at most marginal, and resumming the associated logarithms using (dynamical) renormalization group techniques yields the evolution equation for canonical stochastic inflation. The SdSET is also applicable to models where gravity is dynamical, including inflation. In this case, diffeomorphism invariance ensures that all interactions are irrelevant, trivially implying the all-orders conservation of adiabatic density fluctuations and gravitational waves. We briefly touch on the application to slow-roll eternal inflation by identifying novel relevant operators. This work serves to demystify many aspects of perturbation theory outside the horizon, and has a variety of applications to problems of cosmological interest.

قيم البحث

اقرأ أيضاً

We consider phase transitions on (eternal) de Sitter in an O(N) symmetric scalar field theory. Making use of Starobinskys stochastic inflation we prove that deep infrared scalar modes cannot form a condensate -- and hence they see an effective potent ial that allows no phase transition. We show that by proving convexity of the effective potential that governs deep infrared field fluctuations both at the origin as well as at arbitrary values of the field. Next, we present numerical plots of the scalar field probability distribution function (PDF) and the corresponding effective potential for several values of the coupling constant at the asymptotic future timelike infinity of de Sitter. For small field values the effective potential has an approximately quadratic form, corresponding to a positive mass term, such that the corresponding PDF is approximately Gaussian. However, the curvature of the effective potential shows qualitatively different (typically much softer) behavior on the coupling constant than that implied by the Starobinsky-Yokoyama procedure. For large field values, the effective potential as expected reduces to the tree level potential plus a positive correction that only weakly (logarithmically) depends on the background field. Finally, we calculate the backreaction of fluctuations on the background geometry and show that it is positive.
In the setup of ghost condensation model the generalized second law of black hole thermodynamics can be respected under a radiatively stable assumption that couplings between the field responsible for ghost condensate and matter fields such as those in the Standard Model are suppressed by the Planck scale. Since not only black holes but also cosmology are expected to play important roles towards our better understanding of gravity, we consider a cosmological setup to test the theory of ghost condensation. In particular we shall show that the de Sitter entropy bound proposed by Arkani-Hamed, et.al. is satisfied if ghost inflation happened in the early epoch of our universe and if there remains a tiny positive cosmological constant in the future infinity. We then propose a notion of cosmological Page time after inflation.
91 - Marco Scalisi 2015
We provide a unified description of cosmological $alpha$-attractors and late-time acceleration, in excellent agreement with the latest Planck data. Our construction involves two superfields playing distinctive roles: one is the dynamical field and it s evolution determines inflation and dark energy, the other is nilpotent and responsible for a landscape of vacua and supersymmetry breaking. We prove that the attractor nature of the theory is enhanced when combining the two sectors: cosmological attractors are very stable with respect to any possible value of the cosmological constant and, interestingly, to any generic coupling of the inflationary sector with the field responsible for uplifting. Finally, as related result, we show how specific couplings generate an arbitrary inflaton potential in a supergravity framework with varying Kahler curvature.
We study the arguments given in [1] which suggest that the uplifting procedure in the KKLT construction is not valid. First we show that the modification of the SUSY breaking sector of the nilpotent superfield, as proposed in [1], is not consistent w ith non-linearly realized local supersymmetry of de Sitter supergravity. Keeping this issue aside, we also show that the corresponding bosonic potential does actually describe de Sitter uplifting.
115 - Alek Bedroya 2020
Motivated by the coincidence of scrambling time in de Sitter and maximum lifetime given by the $textit{Trans-Planckian Censorship Conjecture}$ (TCC), we study the relation between the de Sitter complementarity and the Swampland conditions. We study t hermalization in de Sitter space from different perspectives and show that TCC implies de Sitter space cannot live long enough to be considered a thermal background. We also revisit $alpha$-vacua in light of this work and show that TCC imposes multiple initial condition/fine-tuning problems on any conventional inflationary scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا