ترغب بنشر مسار تعليمي؟ اضغط هنا

Initial state anisotropies and their uncertainties in ultrarelativistic heavy-ion collisions from the Monte Carlo Glauber model

143   0   0.0 ( 0 )
 نشر من قبل Massimiliano Alvioli
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In hydrodynamical modeling of heavy-ion collisions, the initial-state spatial anisotropies are translated into momentum anisotropies of the final-state particle distributions. Thus, understanding the origin of the initial-state anisotropies and their uncertainties is important before extracting specific QCD matter properties, such as viscosity, from the experimental data. In this work we review the wounded nucleon approach based on the Monte Carlo Glauber model, charting in particular the uncertainties arising from modeling of the nucleon-nucleon interactions between the colliding nucleon pairs and nucleon-nucleon correlations inside the colliding nuclei. We discuss the differences between the black disk model and a probabilistic profile function approach for the inelastic nucleon-nucleon interactions, and investigate the influence of initial-state correlations using state-of-the-art modeling of these.



قيم البحث

اقرأ أيضاً

In hydrodynamicalmodeling of heavy-ion collisions the initial state spatial anisotropies translate into momentum anisotropies of the final state particle distributions. Thus, understanding the origin of the initial anisotropies and quantifying their uncertainties is important for the extraction of specific QCD matter properties, such as viscosity, from the experimental data. In this work we study the wounded nucleon approach in the Monte Carlo Glauber model framework, focusing especially on the uncertainties which arise from the modeling of the nucleon-nucleon interactions between the colliding nucleon pairs and nucleon-nucleon correlations inside the colliding nuclei. We compare the black disk model and a probabilistic profile function approach for the inelastic nucleon-nucleon interactions, and study the effects of initial state correlations using state-of-theart modeling of these.
It was argued in arXiv:1805.09342 and arXiv:1807.00825 that the systematics of the azimuthal anisotropy coefficients $v_{2,3}$ measured in ultrarelativistic light-heavy ion collisions at RHIC and the LHC can be described in an initial state dilute-de nse Color Glass Condensate (CGC) framework. We elaborate here on the discussion in these papers and provide further novel results that strengthen their conclusions. The underlying mathematical framework and numerical techniques employed are very similar to those in the CGC based IP-Glasma model used previously as initial conditions for heavy-ion collisions. The uncertainties in theory/data comparisons for small systems are discussed, with unknowns that are specific to the model distinguished from those that are generic to all models. We present analytical arguments that demonstrate that quantum interference effects such as Bose enhancement and Hanbury-Brown-Twiss correlations of gluons, as well as coherent multiple scattering of gluons in the projectile off color domains in the target, are enhanced in rare events. The quantum origins of the large anisotropies in small systems are corroborated by numerical results for deuteron-gold collisions that show that large anisotropies in rare configurations can occur when the nucleons in the projectile overlap significantly. This is at variance with the classical intuition of hydrodynamical models. We also comment on the consequences of ignoring the many-body color charge correlations of gluons in models that only consider geometrical fluctuations in the energy density.
We examine the spectrum of bremsstrahlung photons that results from the stopping of the initial net charge distributions in ultra-relativistic nucleus-nucleus collisions at the LHC. This effect has escaped detection so far since it becomes sizeable o nly at very low transverse momentum and at sufficiently forward rapidity. We argue that it may be within reach of the next-generation LHC heavy-ion detector ALICE-3 that is currently under study, and we comment on the physics motivation for measuring it.
We present a brief review of recent theoretical developments and related phenomenological approaches for understanding the initial state of heavy-ion collisions, with emphasis on the Color Glass Condensate formalism.
A simple approach is proposed allowing actual calculations of the preequilibrium dynamics in ultrarelativistic heavy-ion collisions to be performed for a far-from-equilibrium initial state. The method is based on the phenomenological macroscopic equa tions that describe the relaxation dynamics of the energy-momentum tensor and are motivated by Boltzmann kinetics in the relaxation-time approximation. It gives the possibility to match smoothly a nonthermal initial state to the hydrodynamics of the quark gluon plasma. The model contains two parameters, the duration of the prehydrodynamic stage and the initial value of the relaxation-time parameter, and allows one to assess the energy-momentum tensor at a supposed time of initialization of the hydrodynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا