ترغب بنشر مسار تعليمي؟ اضغط هنا

Matching of nonthermal initial conditions and hydrodynamic stage in ultrarelativistic heavy-ion collisions

130   0   0.0 ( 0 )
 نشر من قبل Sergiy Akkelin
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A simple approach is proposed allowing actual calculations of the preequilibrium dynamics in ultrarelativistic heavy-ion collisions to be performed for a far-from-equilibrium initial state. The method is based on the phenomenological macroscopic equations that describe the relaxation dynamics of the energy-momentum tensor and are motivated by Boltzmann kinetics in the relaxation-time approximation. It gives the possibility to match smoothly a nonthermal initial state to the hydrodynamics of the quark gluon plasma. The model contains two parameters, the duration of the prehydrodynamic stage and the initial value of the relaxation-time parameter, and allows one to assess the energy-momentum tensor at a supposed time of initialization of the hydrodynamics.

قيم البحث

اقرأ أيضاً

225 - Chun Shen , Bjorn Schenke 2017
We present a fully three-dimensional initial state model for relativistic heavy-ion collisions at RHIC Beam Energy Scan (BES) collision energies. The initial energy and net baryon density profiles are produced based on a classical string deceleration model. The baryon stopping and fluctuations during this early stage of the collision are investigated by studying the net baryon rapidity distribution and longitudinal decorrelation of the transverse geometry.
74 - Chun Shen , Li Yan 2020
We present a concise review of the recent development of relativistic hydrodynamics and its applications to heavy-ion collisions. Theoretical progress on the extended formulation of hydrodynamics towards out-of-equilibrium systems is addressed, empha sizing the so-called attractor solution. On the other hand, recent phenomenological improvements in the hydrodynamic modeling of heavy-ion collisions with respect to the ongoing Beam Energy Scan program, the quantitative characterization of transport coefficients in the three-dimensionally expanding quark-gluon plasma, the fluid description of small colliding systems, and some other interdisciplinary connections are discussed.
252 - Chun Shen , Bjorn Schenke 2018
We present a fully three-dimensional model providing initial conditions for energy and conserved charge density distributions in heavy ion collisions at RHIC Beam Energy Scan (BES) collision energies. The model includes the dynamical deceleration of participating nucleons or valence quarks. It provides a realistic estimation of the initial baryon stopping during the early stage of collisions. We also present the implementation of the model with 3+1 dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial state model at proper times greater than the initial time for the hydrodynamic simulation. The importance of this dynamical initialization stage on hadronic flow observables at the RHIC BES is quantified.
71 - Cheng Chiu , Chun Shen 2021
We explore theoretical uncertainties in the hydrodynamic description of relativistic heavy-ion collisions by examining the full non-linear causality conditions and quantifying the second-order transport coefficients role on flow observables. The caus ality conditions impose physical constraints on the maximum allowed values of inverse Reynolds numbers during the hydrodynamic evolution. Including additional second-order gradient terms in the Denicol-Niemi-Moln{a}r-Rischke (DNMR) theory significantly shrinks the casual regions compared to those in the Israel-Stewart hydrodynamics. For Au+Au collisions, we find the variations of flow observables are small with and without imposing the necessary causality conditions, suggesting a robust extraction of the Quark-Gluon Plasmas transport coefficients in previous model-to-data comparisons. However, sizable sensitivity is present in small p+Au collisions, which poses challenges to study the small systems collectivity.
190 - U. Heinz 2015
Several recent results are reported from work aiming to improve the quantitative precision of relativistic viscous fluid dynamics for relativistic heavy-ion collisions. The dense matter created in such collisions expands in a highly anisotropic manne r. Due to viscous effects this also renders the local momentum distribution anisotropic. Optimized hydrodynamic approaches account for these anisotropies already at leading order in a gradient expansion. Recently discovered exact solutions of the relativistic Boltzmann equation in anisotropically expanding systems provide a powerful testbed for such improved hydrodynamic approximations. We present the latest status of our quest for a formulation of relativistic viscous fluid dynamics that is optimized for applications to relativistic heavy-ion collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا