ﻻ يوجد ملخص باللغة العربية
In this note we observe that the exact Maxwell-Einstein equations in the background metric of a spinning string can be solved analytically. This allows us to construct an analytical model for the magnetosphere which is approximately force free near to the spinning string. As in the case of a Kerr black hole in the presence of an external magnetic field the spinning string will acquire an electric charge which depends on the vorticity carried by the spinning string. The self-generated magnetic field and currents strongly resemble the current and magnetic field structure of the jets associated with active galaxies as they emerge from the galactic center.
We consider the evolution of a cosmic string loop that is captured by a much more massive and compact black hole. We show that after several reconnections that produce ejections of smaller loops, the loop that remains bound to the black hole moves on
We performed one-dimensional force-free magnetodynamic numerical simulations of the propagation of Alfven waves along magnetic field lines around a spinning black-hole-like object, the Banados--Teitelboim--Zanelli black string, to investigate the dyn
Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars are extreme manifestations of the most magnetized neutron stars: magnetars. The phenomenology of their emission and spectral properties strongly support the idea that the magnetospheres of these as
Quantum electrodynamics (QED) effects may be included in physical processes of magnetar and pulsar magnetospheres with strong magnetic fields. Involving the quantum corrections, the Maxwell electrodynamics is modified to non-linear electrodynamics. I
As is well known, gravitational wave detections of coalescing binaries are standard sirens, allowing a measurement of source distance by gravitational wave means alone. In this paper we explore the analogue of this for continuous gravitational wave e