ترغب بنشر مسار تعليمي؟ اضغط هنا

Vortex images on Ba{1-x}KxFe2As2 observed directly by the magnetic force microscopy

193   0   0.0 ( 0 )
 نشر من قبل Huan Yang
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The vortex states on optimally doped Ba0.6K0.4Fe2As2 and underdoped Ba0.77K0.23Fe2As2 single crystals are imaged by magnetic force microscopy at various magnetic fields below 100 Oe. Local triangular vortex clusters are observed in optimally doped samples. The vortices are more ordered than those in Ba(Fe{1-x}Co{x})2As2, and the calculated pinning force per unit length is about 1 order of magnitude weaker than that in optimally Co-doped 122 at the same magnetic field, indicating that the Co doping at the Fe sites induces stronger pinning. The proportion of six-neighbored vortices to the total amount increases quickly with increasing magnetic field, and the estimated value reaches 100% at several tesla. Vortex chains are also found in some local regions, which enhance the pinning force as well as the critical current density. Lines of vortex chains are observed in underdoped samples, and they may have originated from the strong pinning near the twin boundaries arising from the structural transition.

قيم البحث

اقرأ أيضاً

Here we apply high resolution angle-resolved photoemission spectroscopy (ARPES) using a wide excitation energy range to probe the electronic structure and the Fermi surface topology of the Ba1-xKxFe2As2 (Tc = 32 K) superconductor. We find significant deviations in the low energy band structure from that predicted in calculations. A set of Fermi surface sheets with unexpected topology is detected at the Brillouin zone boundary. At the X-symmetry point the Fermi surface is formed by a shallow electron-like pocket surrounded by four hole-like pockets elongated in G-X and G-Y directions.
69 - S. W. Zhang , L. Ma , Y. D. Hou 2009
We performed $^{75}$As NMR studies on two overdoped high-quality Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ (x=0.7 and 1.0) single crystals. In the normal states, we found a dramatic increase of the spin-lattice relaxation ($1/^{75}T_1$) from the x=0.7 to the x=1 .0 samples. In KFe$_2$As$_2$, the ratio of $1/^{75}T_1TK_n^2$, where $^{75}K_n$ is the Knight shift, increases as temperature drops. These results indicate the existence of a new type of spin fluctuations in KFe$_2$As$_2$ which is accustomed to being treated as a simple Fermi liquid. In the superconducting state, we observe a step-like feature in the temperature dependence of the spin-lattice relaxation of the x=0.7 sample, which supports a two-gap superconductivity as the underdoped materials. However, the temperature scalings of $1/^{75}T_1$ below Tc in the overdoped samples are significantly different from those in the under or optimal doped ones. A power-law scaling behavior $1/^{75}T_1Tsim T^{0.5}$ is observed, which indicates universal strong low energy excitations in the overdoped hole-type superconductors.
In the temperature-concentration phase diagram of most iron-based superconductors, antiferromagnetic order is gradually suppressed to zero at a critical point, and a dome of superconductivity forms around that point. The nature of the magnetic phase and its fluctuations is of fundamental importance for elucidating the pairing mechanism. In Ba{1-x}KxFe2As2 and Ba{1-x}NaxFe2As2, it has recently become clear that the usual stripe-like magnetic phase, of orthorhombic symmetry, gives way to a second magnetic phase, of tetragonal symmetry, near the critical point, between x = 0.24 and x = 0.28. Here we report measurements of the electrical resistivity of Ba{1-x}KxFe2As2 under applied hydrostatic pressures up to 2.75 GPa, for x = 0.22, 0.24 and 0.28. We track the onset of the tetragonal magnetic phase using the sharp anomaly it produces in the resistivity. In the temperature-concentration phase diagram of Ba{1-x}KxFe2As2, we find that pressure greatly expands the tetragonal magnetic phase, while the stripe-like phase shrinks. This raises the interesting possibility that the fluctuations of the former phase might be involved in the pairing mechanism responsible for the superconductivity.
The magnetization around the superconducting transition was recently measured in a high-quality Ba(1-x)KxFe2As2 single crystal with magnetic fields applied along and transverse to the crystal Fe-layers [J. Mosqueira et al., Phys. Rev. B 83, 094519 (2 011)]. Here we extend this study to the finite field (or Prange) regime, in which the magnetic susceptibility is expected to be strongly dependent on the applied magnetic field. These measurements are analyzed in the framework of the three-dimensional anisotropic Ginzburg Landau (3D-aGL) approach generalized to the short wavelength regime through the introduction of a total-energy cutoff in the fluctuation spectrum. The results further confirm the adequacy of GL approaches to describe the fluctuation effects close to the superconducting transition of these materials.
We propose a scheme for the use of magnetic force microscopy to manipulate Majorana zero modes emergent in vortex cores of topological superconductors in the Fe(Se,Te) family. We calculate the pinning forces necessary to drag two vortices together an d the resulting change in current and charge density of the composite fermion. A possible algorithm for measuring and altering Majorana pair parity is demonstrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا