ترغب بنشر مسار تعليمي؟ اضغط هنا

Pb-graphene-Pb Josephson junctions: characterization in B field

125   0   0.0 ( 0 )
 نشر من قبل Ivan Borzenets
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We fabricate superconductor-graphene-superconductor Josephson junctions with superconducting regions made of lead (Pb). The critical current through grapehene may be modulated by external magnetic field; the resulting Fraunhofer interference pattern shows several periods of oscillations, indicating that the junction is uniform. Deviations from the perfect Fraunhofer pattern are observed, and their cause is explained by a simulation that takes into account the sample design.



قيم البحث

اقرأ أيضاً

The possibility of inducing superconductivity in type-I Weyl semimetal through coupling its surface to a superconductor was investigated. A single crystal of NbP, grown by chemical vapor transport method, was carefully characterized by XRD, EDX, SEM, ARPES techniques and by electron transport measurements. The mobility spectrum of the carriers was determined. For the studies of interface transmission, the (001) surface of the crystal was covered by several hundred nm thick metallic layers of either Pb, or Nb, or In. DC current-voltage characteristics and AC differential conductance through the interfaces as a function of the DC bias were investigated. When the metals become superconducting, all three types of junctions show conductance increase, pointing out the Andreev reflection as a prevalent contribution to the subgap conductance. In the case of Pb-NbP and Nb-NbP junctions, the effect is satisfactorily described by modified Blonder-Tinkham-Klapwijk model. The absolute value of the conductance is much smaller than that for the bulk crystal, indicating that the transmission occurs through only a small part of the contact area. An opposite situation occurs in In-NbP junction, where the conductance at the peak reaches the bulk value indicating that almost whole contact area is transmitting and, additionally, a superconducting proximity phase is formed in the material. We interpret this as a result of indium diffusion into NbP, where the metal atoms penetrate the surface barrier and form very transparent superconductor-Weyl semimetal contact inside. However, further diffusion occurring already at room temperature leads to degradation of the effect, so it is observed only in the pristine structures. Despite of this, our observation directly demonstrates possibility of inducing superconductivity in a type-I Weyl semimetal.
74 - J. Tang , M.T. Wei , A. Sharma 2020
We investigate the zero-bias behavior of Josephson junctions made of encapsulated graphene boron nitride heterostructures in the long ballistic junction regime. For temperatures down to 2.7K, the junctions appear non-hysteretic with respect to the sw itching and retrapping currents $I_C$ and $I_R$. A small non-zero resistance is observed even around zero bias current, and scales with temperature as dictated by the phase diffusion mechanism. By varying the graphene carrier concentration we are able to confirm that the observed phase diffusion mechanism follows the trend for an overdamped Josephson junction. This is in contrast with the majority of graphene-based junctions which are underdamped and shorted by the environment at high frequencies.
We have studied mesoscopic Josephson junctions formed by highly $n$-doped InAs nanowires and superconducting Ti/Pb source and drain leads. The current-voltage properties of the system are investigated by varying temperature and external out-of-plane magnetic field. Superconductivity in the Pb electrodes persists up to $ sim 7$ K and with magnetic field values up to 0.4 T. Josephson coupling at zero backgate voltage is observed up to 4.5 K and the critical current is measured to be as high as 615 nA. The supercurrent suppression as a function of the magnetic field reveals a diffraction pattern that is explained by a strong magnetic flux focusing provided by the superconducting electrodes forming the junction.
Short ballistic graphene Josephson junctions sustain superconducting current with a non-sinusoidal current-phase relation up to a critical current threshold. The current-phase relation, arising from proximitized superconductivity, is gate-voltage tun able and exhibits peculiar skewness observed in high quality graphene superconductors heterostructures with clean interfaces. These properties make graphene Josephson junctions promising sensitive quantum probes of microscopic fluctuations underlying transport in two-dimensions. We show that the power spectrum of the critical current fluctuations has a characteristic $1/f$ dependence on frequency, $f$, probing two points and higher correlations of carrier density fluctuations of the graphene channel induced by carrier traps in the nearby substrate. Tunability with the Fermi level, close to and far from the charge neutrality point, and temperature dependence of the noise amplitude are clear fingerprints of the underlying material-inherent processes. Our results suggest a roadmap for the analysis of decoherence sources in the implementation of coherent devices by hybrid nanostructures.
We perform extensive analysis of graphene Josephson junctions embedded in microwave circuits. By comparing a diffusive junction at 15 mK with a ballistic one at 15 mK and 1 K, we are able to reconstruct the current-phase relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا