ترغب بنشر مسار تعليمي؟ اضغط هنا

THGEM-based detectors for sampling elements in DHCAL: laboratory and beam evaluation

120   0   0.0 ( 0 )
 نشر من قبل Lior Arazi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the results of an extensive R&D program aimed at the evaluation of Thick-Gas Electron Multipliers (THGEM) as potential active elements for Digital Hadron Calorimetry (DHCAL). Results are presented on efficiency, pad multiplicity and discharge probability of a 10x10 cm2 prototype detector with 1 cm2 readout pads. The detector is comprised of single- or double-THGEM multipliers coupled to the pad electrode either directly or via a resistive anode. Investigations employing standard discrete electronics and the KPiX readout system have been carried out both under laboratory conditions and with muons and pions at the CERN RD51 test beam. For detectors having a charge-induction gap, it has been shown that even a ~6 mm thick single-THGEM detector reached detection efficiencies above 95%, with pad-hit multiplicity of 1.1-1.2 per event; discharge probabilities were of the order of 1e-6 - 1e-5 sparks/trigger, depending on the detector structure and gain. Preliminary beam tests with a WELL hole-structure, closed by a resistive anode, yielded discharge probabilities of <2e-6 for an efficiency of ~95%. Methods are presented to reduce charge-spread and pad multiplicity with resistive anodes. The new method showed good prospects for further evaluation of very thin THGEM-based detectors as potential active elements for DHCAL, with competitive performances, simplicity and robustness. Further developments are in course.



قيم البحث

اقرأ أيضاً

Beam studies of thin single- and double-stage THGEM-based detectors are presented. Several 10 x 10 cm^2 configurations with a total thickness of 5-6 mm (excluding readout electronics), with 1 x 1 cm^2 pads inductively coupled through a resistive laye r to APV-SRS readout electronics, were investigated with muons and pions. Detection efficiencies in the 98% range were recorded with an average pad-multiplicity of ~1.1. The resistive anode resulted in efficient discharge damping, with few-volt potential drops; discharge probabilities were ~10^{-7} for muons and 10^{-6} for pions in the double-stage configuration, at rates of a few kHz/cm^2. These results, together with the robustness of THGEM electrodes against spark damage and their suitability for economic production over large areas make THGEM-based detectors highly competitive compared to the other technologies considered for the SiD-DHCAL.
Digital and Semi-Digital Hadronic Calorimeters (S)DHCAL were suggested for future Colliders as part of the particle-flow concept. Though studied mostly with RPC-based techniques, investigations have shown that MPGD-based sampling elements could outpe rform. An attractive, industry-produced, robust, particle-tracking detector for large-area coverage, e.g. in (S)DHCAL, could be the novel single-stage Resistive Plate WELL (RPWELL). It is a single-sided THGEM coupled to the segmented readout electrode through a sheet of large bulk resistivity. We summarize here the preliminary test-beam results obtained with 6.5 mm thick (incl. electronics) {$48 times 48,mathrm{cm^2}$}~RPWELL detectors. Two configurations are considered: a standalone RPWELL detector studied with 150 GeV muons and high-rate pions beams and RPWELL sampling element investigated within a small-(S)DHCAL prototype consisting of 7 resistive MICROMEGAS sampling elements followed by 5 RPWELL ones. The sampling elements were equipped with a Semi-Digital readout electronics based on the MICROROC chip.
The article deals with the detection efficiency of UV-photon detectors consisting of Thick Gas Electron Multipliers (THGEM) coated with CsI photocathode, operated in atmospheric Ne/CH4 and Ne/CF4 mixtures. We report on the photoelectron extraction ef ficiency from the photocathode into these gas mixtures, and on the photoelectron collection efficiency into the THGEM holes. Full collection efficiency was reached in all gases investigated, in some cases at relatively low multiplication. High total detector gains for UV photons, in excess of 10^5, were reached at relatively low operation voltages with a single THGEM element. We discuss the photon detection efficiency in the context of possible application to RICH.
This article reports the characterization of two High Purity Germanium detectors performed by extracting and comparing their efficiencies using experimental data and Monte Carlo simulations. The efficiencies were calculated for pointlike $gamma$-ray sources as well as for extended calibration sources. Characteristics of the detectors such as energy linearity, energy resolution, and full energy peak efficiencies are reported from measurements performed on surface laboratories. The detectors will be deployed in a $gamma$-ray assay facility that will be located in the first underground laboratory in Mexico, Laboratorio Subterraneo de Mineral del Chico (LABChico), in the Comarca Minera UNESCO Global Geopark
The properties of UV-photon imaging detectors consisting of CsI-coated THGEM electron multipliers are summarized. New results related to detection of Cherenkov light (RICH) and scintillation photons in noble liquid are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا