ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards THGEM UV-photon detectors for RICH: on single-photon detection efficiency in Ne/CH4 and Ne/CF4

120   0   0.0 ( 0 )
 نشر من قبل Marco Cortesi Mr.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The article deals with the detection efficiency of UV-photon detectors consisting of Thick Gas Electron Multipliers (THGEM) coated with CsI photocathode, operated in atmospheric Ne/CH4 and Ne/CF4 mixtures. We report on the photoelectron extraction efficiency from the photocathode into these gas mixtures, and on the photoelectron collection efficiency into the THGEM holes. Full collection efficiency was reached in all gases investigated, in some cases at relatively low multiplication. High total detector gains for UV photons, in excess of 10^5, were reached at relatively low operation voltages with a single THGEM element. We discuss the photon detection efficiency in the context of possible application to RICH.



قيم البحث

اقرأ أيضاً

The operation of Thick Gaseous Electron Multipliers (THGEM) in Ne and Ne/CH4 mixtures, features high multiplication factors at relatively low operation potentials, in both single- and double-THGEM configurations. We present some systematic data measu red with UV-photons and soft x-rays, in various Ne mixtures. It includes gain dependence on hole diameter and gas purity, photoelectron extraction efficiency from CsI photocathodes into the gas, long-term gain stability and pulse rise-time. Position resolution of a 100x100 mm^2 X-rays imaging detector is presented. Possible applications are discussed.
There are several applications which require high position resolution UV imaging. For these applications we have developed and successfully tested a new version of a 2D UV single photon imaging detector based on a microgap RPC. The main features of s uch a detectors is the high position resolution - 30 micron in digital form and the high quantum efficiency (1-8% in the spectral interval of 220-140 nm). Additionally, they are spark- protected and can operate without any feedback problems at high gains, close to a streamer mode. In attempts to extend the sensitivity of RPCs to longer wavelengths we have successfully tested the operation of the first sealed parallel-plate gaseous detectors with CsTe photocathodes. Finally, the comparison with other types of photosensitive detectors is given and possible fields of applications are identified.
Identification of high momentum hadrons at the future EIC is crucial, gaseous RICH detectors are therefore viable option. Compact collider setups impose to construct RICHes with small radiator length, hence significantly limiting the number of detect ed photons. More photons can be detected in the far UV region, using a windowless RICH approach. QE of CsI degrades under strong irradiation and air contamination. Nanodiamond based photocathodes (PCs) are being developed as an alternative to CsI. Recent development of layers of hydrogenated nanodiamond powders as an alternative photosensitive material and their performance, when coupled to the THick Gaseous Electron Multipliers (THGEM)-based detectors, are the objects of an ongoing R&D. We report about the initial phase of our studies.
The operation of single-, double- and triple-THGEM UV-detectors with reflective CsI photocathodes (CsI-THGEM) in Ne/CH4 and Ne/CF4 mixtures was investigated in view of their potential applications in RICH. The studies were carried out with UV, x-rays and {beta}-electrons and focused on the maximum achievable gain, discharge probability, cathode excitation effects and long-term gain stability. Comparative studies under similar conditions were made in CH4, CF4 and Ne/CF4, with a MWPC coupled to a reflective CsI photocathode (CsI-MWPC). It was found that at counting rates <= 10 Hz/mm^2 the maximum achievable gain of CsI-THGEMs is determined by the Raether limit; at counting rates > 10 Hz/mm^2 it dropped with rate. In all cases investigated the attainable CsI-THGEM gain was significantly higher than that of the CsI-MWPC, under similar conditions. Furthermore, the CsI-THGEM UV-detector suffered fewer cathode-excitation induced effects as compared to CsI-MWPC and had better stability at high counting rates.
For photon-counting applications at ultraviolet wavelengths, there are currently no detectors that combine high efficiency (> 50%), sub-nanosecond timing resolution, and sub-Hz dark count rates. Superconducting nanowire single-photon detectors (SNSPD s) have seen success over the past decade for photon-counting applications in the near-infrared, but little work has been done to optimize SNSPDs for wavelengths below 400 nm. Here, we describe the design, fabrication, and characterization of UV SNSPDs operating at wavelengths between 250 and 370 nm. The detectors have active areas up to 56 ${mu}$m in diameter, 70 - 80% efficiency, timing resolution down to 60 ps FWHM, blindness to visible and infrared photons, and dark count rates of ~ 0.25 counts/hr for a 56 ${mu}$m diameter pixel. By using the amorphous superconductor MoSi, these UV SNSPDs are also able to operate at temperatures up to 4.2 K. These performance metrics make UV SNSPDs ideal for applications in trapped-ion quantum information processing, lidar studies of the upper atmosphere, UV fluorescent-lifetime imaging microscopy, and photon-starved UV astronomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا