ﻻ يوجد ملخص باللغة العربية
Starting from the chiral Lagrangian for Wilson fermions at nonzero lattice spacing we have obtained compact expressions for all spectral correlation functions of the Hermitian Wilson Dirac operator in the $epsilon$-domain of QCD with dynamical quarks. We have also obtained the distribution of the chiralities over the real eigenvalues of the Wilson Dirac operator for any number of flavors. All results have been derived for a fixed index of the Dirac operator. An important effect of dynamical quarks is that they completely suppress the inverse square root singularity in the spectral density of the Hermitian Wilson Dirac operator. The analytical results are given in terms of an integral over a diffusion kernel for which the square of the lattice spacing plays the role of time. This approach greatly simplifies the expressions which we here reduce to the evaluation of two-dimensional integrals.
QCD thermodynamics is considered using Wilson fermions in the fixed scale approach. The temperature dependence of the renormalized chiral condensate, quark number susceptibility and Polyakov loop is measured at four lattice spacings allowing for a co
QCD is investigated at finite temperature using Wilson fermions in the fixed scale approach. A 2+1 flavor stout and clover improved action is used at four lattice spacings allowing for control over discretization errors. The light quark masses in thi
The improvement of fermionic operators for Ginsparg-Wilson fermions is investigated. We present explicit formulae for improved Greens functions, which apply both on-shell and off-shell.
We calculate the spectral function of the QCD Dirac operator using the four-dimensional effective operator constructed from the Mobius domain-wall implementation. We utilize the eigenvalue filtering technique combined with the stochastic estimate of
We compute the overlap Dirac spectrum on three ensembles generated using 2+1 flavor domain wall fermions. The spectral density is determined up to $lambdasim$100 MeV with sub-percentage statistical uncertainty. The three ensembles have different latt