ﻻ يوجد ملخص باللغة العربية
We compute the overlap Dirac spectrum on three ensembles generated using 2+1 flavor domain wall fermions. The spectral density is determined up to $lambdasim$100 MeV with sub-percentage statistical uncertainty. The three ensembles have different lattice spacings and two of them have quark masses tuned to the physical point. We show that we can resolve the flavor content of the sea quarks and constrain their masses using the Dirac spectral density. We find that the density is close to a constant below $lambdale$ 20 MeV (but 10% higher than that in the 2-flavor chiral limit) as predicted by chiral perturbative theory ($chi$PT), and then increases linearly due to the strange quark mass. Using the next to leading order $chi$PT, one can extract the light and strange quark masses with $sim$20% uncertainties. Using the non-perturbative RI/MOM renormalization, we obtain the chiral condensates at $overline{textrm{MS}}$ 2 GeV as $Sigma=(260.3(0.7)(1.3)(0.7)(0.8) textrm{MeV})^3$ in the $N_f=2$ (keeping the strange quark mass at the physical point) chiral limit and $Sigma_0=(232.6(0.9)(1.2)(0.7)(0.8) textrm{MeV})^3$ in the $N_f=3$ chiral limit, where the four uncertainties come from the statistical fluctuation, renormalization constant, continuum extrapolation and lattice spacing determination. Note that {$Sigma/Sigma_0=1.40(2)(2)$ is much larger than 1} due to the strange quark mass effect.
Starting from the chiral Lagrangian for Wilson fermions at nonzero lattice spacing we have obtained compact expressions for all spectral correlation functions of the Hermitian Wilson Dirac operator in the $epsilon$-domain of QCD with dynamical quarks
In a sector of fixed topological charge, the chiral condensate has a discontinuity given by the Banks-Casher formula also in the case of one-flavor QCD. However, at fixed theta-angle, the chiral condensate remains constant when the quark mass crosses
We compute the spectral density of the (Hermitean) Dirac operator in Quantum Chromodynamics with two light degenerate quarks near the origin. We use CLS/ALPHA lattices generated with two flavours of O(a)-improved Wilson fermions corresponding to pseu
In the $epsilon$-domain of QCD we have obtained exact analytical expressions for the eigenvalue density of the Dirac operator at fixed $theta e 0$ for both one and two flavors. These results made it possible to explain how the different contribution
In the continuum the definitions of the covariant Dirac operator and of the gauge covariant derivative operator are tightly intertwined. We point out that the naive discretization of the gauge covariant derivative operator is related to the existence