ﻻ يوجد ملخص باللغة العربية
Generalized superstatistics, i.e., a statistics of superstatistics, is proposed. A generalized superstatistical system comprises a set of superstatistical subsystems and represents a generalized hyperensemble. There exists a random control parameter that determines both the density of energy states and the distribution of the intensive parameter for each superstatistical subsystem, thereby forming the third, upper level of dynamics. Generalized superstatistics can be used for nonstationary nonequilibrium systems. The system in which a supercritical multitype age-dependent branching process takes place is an example of a nonstationary generalized superstatistical system. The theory is applied to pair production in a neutron star magnetosphere.
Superstatistics [C. Beck and E.G.D. Cohen, Physica A 322, 267 (2003)] is a formalism aimed at describing statistical properties of a generic extensive quantity E in complex out-of-equilibrium systems in terms of a superposition of equilibrium canonic
We consider two different proposals to generate a time series with the same non-Poisson distribution of waiting times, to which we refer to as renewal and modulation. We show that, in spite of the apparent statistical equivalence, the two time series
We discuss the situations under which Brownian yet non-Gaussian (BnG) diffusion can be observed in the model of a particles motion in a random landscape of diffusion coefficients slowly varying in space. Our conclusion is that such behavior is extrem
We generalize the second law of thermodynamics in its maximum work formulation for a nonequilibrium initial distribution. It is found that in an isothermal process, the Boltzmann relative entropy (H-function) is not just a Lyapunov function but also
We present a generalization of Blochs theorem to finite-range lattice systems of independent fermions, in which translation symmetry is broken only by arbitrary boundary conditions, by providing exact, analytic expressions for all energy eigenvalues