ﻻ يوجد ملخص باللغة العربية
We present a generalization of Blochs theorem to finite-range lattice systems of independent fermions, in which translation symmetry is broken only by arbitrary boundary conditions, by providing exact, analytic expressions for all energy eigenvalues and eigenstates. By transforming the single-particle Hamiltonian into a corner-modified banded block-Toeplitz matrix, a key step is a bipartition of the lattice, which splits the eigenvalue problem into a system of bulk and boundary equations. The eigensystem inherits most of its solutions from an auxiliary, infinite translation-invariant Hamiltonian that allows for non-unitary representations of translation symmetry. A reformulation of the boundary equation in terms of a boundary matrix ensures compatibility with the boundary conditions, and determines the allowed energy eigenstates. We show how the boundary matrix captures the interplay between bulk and boundary properties, leading to efficient indicators of bulk-boundary correspondence. Remarkable consequences of our generalized Bloch theorem are the engineering of Hamiltonians that host perfectly localized, robust zero-energy edge modes, and the predicted emergence, e.g. in Kitaevs chain, of localized excitations whose amplitudes decay exponentially with a power-law prefactor. We further show how the theorem yields diagonalization algorithms for the class of Hamiltonians under consideration, and use the proposed bulk-boundary indicator to characterize the topological response of a multi-band time-reversal invariant s-wave superconductor under twisted boundary conditions, showing how a fractional Josephson effect can occur without a fermionic parity switch. Finally, we establish connections to the transfer matrix method and demonstrate, using the paradigmatic Kitaevs chain example, that a non-diagonalizable transfer matrix signals the presence of solutions with a power-law prefactor.
We describe a method for exactly diagonalizing clean $D$-dimensional lattice systems of independent fermions subject to arbitrary boundary conditions in one direction, as well as systems composed of two bulks meeting at a planar interface. Our method
We consider an open isotropic Heisenberg quantum spin chain, coupled at the ends to boundary reservoirs polarized in different directions, which sets up a twisting gradient across the chain. Using a matrix product ansatz, we calculate the exact magne
We extend the exact periodic Bethe Ansatz solution for one-dimensional bosons and fermions with delta-interaction and arbitrary internal degrees of freedom to the case of hard wall boundary conditions. We give an analysis of the ground state properti
We describe a hierarchy of stochastic boundary conditions (SBCs) that can be used to systematically eliminate finite size effects in Monte Carlo simulations of Ising lattices. For an Ising model on a $100 times 100$ square lattice, we measured the sp
Time reversal invariance (TRI) of particles systems has many consequences, among~which the celebrated Onsager reciprocal relations, a milestone in Statistical Mechanics dating back to 1931. Because for a long time it was believed that (TRI) dos not h