ﻻ يوجد ملخص باللغة العربية
We present an ab initio theory of transport quantities of metallic ferromagnets developed in the framework of the fully relativistic tight-binding linear muffin-tin orbital method. The approach is based on the Kubo-Streda formula for the conductivity tensor, on the coherent potential approximation for random alloys, and on the concept of interatomic electron transport. The developed formalism is applied to pure 3d transition metals (Fe, Co, Ni) and to random Ni-based ferromagnetic alloys (Ni-Fe, Ni-Co, Ni-Mn). High values of the anisotropic magnetoresistance (AMR), found for Ni-rich alloys, are explained by a negligible disorder in the majority spin channel while a change of the sign of the anomalous Hall effect (AHE) on alloying is interpreted as a band-filling effect without a direct relation to the high AMR. The influence of disorder on the AHE in concentrated alloys is investigated as well.
We present an ab initio theory of the Gilbert damping in substitutionally disordered ferromagnetic alloys. The theory rests on introduced nonlocal torques which replace traditional local torque operators in the well-known torque-correlation formula a
Core-level shifts and core-hole screening effects in alloy formation are studied ``ab initio by constrained-density-functional total-energy calculations. For our case study, the ordered intermetallic alloy MgAu, final-state effects are essential to a
The anomalous plasmon linewidth dispersion (PLD) measured in K by vom Felde, Sprosser-Prou, and Fink (Phys. Rev. B 40, 10181 (1989)), has been attributed to strong dynamical electron-electron correlations. On the basis of ab initio response calculati
We present an extension of the relativistic electron transport theory for the standard (charge) conductivity tensor of random alloys within the tight-binding linear muffin-tin orbital method to the so-called spin-dependent conductivity tensor, which
We present results of systematic fully relativistic first-principles calculations of the uniaxial magnetic anisotropy energy (MAE) of a disordered and partially ordered tetragonal Fe-Co alloy using the coherent potential approximation (CPA). This all