ترغب بنشر مسار تعليمي؟ اضغط هنا

A Multidimensional Exponential Utility Indifference Pricing Model with Applications to Counterparty Risk

152   0   0.0 ( 0 )
 نشر من قبل Gechun Liang
 تاريخ النشر 2011
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers exponential utility indifference pricing for a multidimensional non-traded assets model subject to inter-temporal default risk, and provides a semigroup approximation for the utility indifference price. The key tool is the splitting method, whose convergence is proved based on the Barles-Souganidis monotone scheme, and the convergence rate is derived based on Krylovs shaking the coefficients technique. We apply our methodology to study the counterparty risk of derivatives in incomplete markets.



قيم البحث

اقرأ أيضاً

We propose a model for an insurance loss index and the claims process of a single insurance company holding a fraction of the total number of contracts that captures both ordinary losses and losses due to catastrophes. In this model we price a catast rophe derivative by the method of utility indifference pricing. The associated stochastic optimization problem is treated by techniques for piecewise deterministic Markov processes. A numerical study illustrates our results.
This paper considers exponential utility indifference pricing for a multidimensional non-traded assets model, and provides two linear approximations for the utility indifference price. The key tool is a probabilistic representation for the utility in difference price by the solution of a functional differential equation, which is termed emph{pseudo linear pricing rule}. We also provide an alternative derivation of the quadratic BSDE representation for the utility indifference price.
This work focuses on the indifference pricing of American call option underlying a non-traded stock, which may be partially hedgeable by another traded stock. Under the exponential forward measure, the indifference price is formulated as a stochastic singular control problem. The value function is characterized as the unique solution of a partial differential equation in a Sobolev space. Together with some regularities and estimates of the value function, the existence of the optimal strategy is also obtained. The applications of the characterization result includes a derivation of a dual representation and the indifference pricing on employee stock option. As a byproduct, a generalized Itos formula is obtained for functions in a Sobolev space.
A stochastic model for pure-jump diffusion (the compound renewal process) can be used as a zero-order approximation and as a phenomenological description of tick-by-tick price fluctuations. This leads to an exact and explicit general formula for the martingale price of a European call option. A complete derivation of this result is presented by means of elementary probabilistic tools.
This paper presents the solution to a European option pricing problem by considering a regime-switching jump diffusion model of the underlying financial asset price dynamics. The regimes are assumed to be the results of an observed pure jump process, driving the values of interest rate and volatility coefficient. The pure jump process is assumed to be a semi-Markov process on finite state space. This consideration helps to incorporate a specific type of memory influence in the asset price. Under this model assumption, the locally risk minimizing price of the European type path-independent options is found. The F{o}llmer-Schweizer decomposition is adopted to show that the option price satisfies an evolution problem, as a function of time, stock price, market regime, and the stagnancy period. To be more precise, the evolution problem involves a linear, parabolic, degenerate and non-local system of integro-partial differential equations. We have established existence and uniqueness of classical solution to the evolution problem in an appropriate class.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا