ترغب بنشر مسار تعليمي؟ اضغط هنا

First-principle studies of the spin-orbit and the Dzyaloshinskii-Moriya interactions in the {Cu$_3$} single-molecule magnet

71   0   0.0 ( 0 )
 نشر من قبل javier Francisco Nossa Marquez
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Frustrated triangular molecule magnets such as {Cu$_3$} are characterized by two degenerate S=1/2 ground-states with opposite chirality. Recently it has been proposed theoretically [PRL {bf 101}, 217201 (2008)] and verified by {it ab-initio} calculations [PRB {bf 82}, 155446 (2010)] that an external electric field can efficiently couple these two chiral spin states, even in the absence of spin-orbit interaction (SOI). The SOI is nevertheless important, since it introduces a splitting in the ground-state manifold via the Dzyaloshinskii-Moriya interaction. In this paper we present a theoretical study of the effect of the SOI on the chiral states within spin density functional theory. We employ a recently-introduced Hubbard model approach to elucidate the connection between the SOI and the Dzyaloshinskii-Moriya interaction. This allows us to express the Dzyaloshinskii-Moriya interaction constant $D$ in terms of the microscopic Hubbard model parameters, which we calculate from first-principles. The small splitting that we find for the {Cu$_3$} chiral state energies ($Delta approx 0.02$ meV) is consistent with experimental results. The Hubbard model approach adopted here also yields a better estimate of the isotropic exchange constant than the ones obtained by comparing total energies of different spin configurations. The method used here for calculating the DM interaction unmasks its simple fundamental origin which is the off-diagonal spin-orbit interaction between the generally multireference vacuum state and single-electron excitations out of those states.

قيم البحث

اقرأ أيضاً

We report the thickness dependence of Dzyaloshinskii-Moriya interaction (DMI) and spin-orbit torques (SOTs) in PtCo(t)AlOx, studied by current-induced domain wall (DW) motion and second-harmonic experiments. From the DW motion study, a monotonous dec ay of the effective DMI strength with an increasing Co thickness is observed, in agreement with a DMI originating at the PtCo interface. The study of the ferromagnetic thickness dependence of spin-orbit torques reveals a more complex behavior. The effective SOT-field driving the DW motion is found to initially increase and then saturate with an increasing ferromagnetic thickness, while the effective SOT-fields acting on a saturated magnetic state exhibit a non-monotonic behavior with increasing Co-thickness. The observed thickness dependence suggests the spin-Hall effect in Pt as the main origin of the SOTs, with the measured SOT amplitudes resulting from the interplay between the varying thickness and the transverse spin diffusion length of the Co layer.
We show that the nuclear spin dynamics in the single-molecule magnet Mn12-ac below 1 K is governed by quantum tunneling fluctuations of the cluster spins, combined with intercluster nuclear spin diffusion. We also obtain the first experimental proof that - surprisingly - even deep in the quantum regime the nuclear spins remain in good thermal contact with the lattice phonons. We propose a simple model for how T-independent tunneling fluctuations can relax the nuclear polarization to the lattice, that may serve as a framework for more sophisticated theories.
The influence of the Dzyaloshinskii-Moriya interaction in ultra-thin ferromagnetic films and chiral magnonic crystals on the behavior of spin waves is reviewed. During the last decade, it has been shown, both theoretically and experimentally, that th is anisotropic exchange interaction produces non-reciprocal features on the spin-wave spectrum of a magnetic system, a phenomenon that occurs both for bulk and interfacial Dzyaloshinskii-Moriya coupling. More recently, the concept of a chiral magnonic crystal has been introduced, where the interfacial Dzyaloshinskii-Moriya interaction is periodic. The effect of this periodicity include additional features such as flat bands, indirect gaps, and an unusual spin-wave evolution.
We study theoretically spin transport through a single-molecule magnet (SMM) in the sequential and cotunneling regimes, where the SMM is weakly coupled to one ferromagnetic and one normalmetallic leads. By a master-equation approach, it is found that the spin polarization injected from the ferromagnetic lead is amplified and highly polarized spin-current can be generated, due to the exchange coupling between the transport electron and the anisotropic spin of the SMM. Moreover, the spin-current polarization can be tuned by the gate or bias voltage, and thus an efficient spin injection device based on the SMM is proposed in molecular spintronics.
We study the phases of a spin system on the Kagome lattice with nearest-neighbor $XXZ$ interactions with anisotropy ratio $Delta$ and Dzyaloshinsky-Moriya interactions with strength $D$. In the classical limit where the spin $S$ at each site is very large, we find a rich phase diagram of the ground state as a function of $Delta$ and $D$. There are five distinct phases which correspond to different ground state spin configurations in the classical limit. We use spin wave theory to find the bulk energy bands of the magnons in some of these phases. We also study a strip of the system which has infinite length and finite width; we find modes which are localized on one of the edges of the strip with energies which lie in the gaps of the bulk modes. In the ferromagnetic phase in which all the spins point along the $+ hat z$ or $- hat z$ direction, the bulk bands are separated from each other by finite energy gaps. This makes it possible to calculate the Berry curvature at all momenta, and hence the Chern numbers for every band; the number of edge states is related to the Chern numbers. Interestingly, we find that there are four different regions in this phase where the Chern numbers are different. Hence there are four distinct topological phases even though the ground state spin configuration is identical in all these phases. We calculate the thermal Hall conductivity of the magnons as a function of the temperature in the above ferromagnetic phase; we find that this can distinguish between the various topological phases. These results are valid for all values of $S$.In the other phases, there are no gaps between the different bands; hence the edge states are not topologically protected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا