ﻻ يوجد ملخص باللغة العربية
The influence of the Dzyaloshinskii-Moriya interaction in ultra-thin ferromagnetic films and chiral magnonic crystals on the behavior of spin waves is reviewed. During the last decade, it has been shown, both theoretically and experimentally, that this anisotropic exchange interaction produces non-reciprocal features on the spin-wave spectrum of a magnetic system, a phenomenon that occurs both for bulk and interfacial Dzyaloshinskii-Moriya coupling. More recently, the concept of a chiral magnonic crystal has been introduced, where the interfacial Dzyaloshinskii-Moriya interaction is periodic. The effect of this periodicity include additional features such as flat bands, indirect gaps, and an unusual spin-wave evolution.
The Dzyaloshinskii-Moriya interaction (DMI), being one of the origins for chiral magnetism, is currently attracting huge attention in the research community focusing on applied magnetism and spintronics. For future applications an accurate measuremen
We study the interaction of surface acoustic waves with spin waves in ultra-thin CoFeB/Pt bilayers. Due to the interfacial Dzyaloshinskii-Moriya interaction (DMI), the spin wave dispersion is non-degenerate for oppositely propagating spin waves in Co
We study the phases of a spin system on the Kagome lattice with nearest-neighbor $XXZ$ interactions with anisotropy ratio $Delta$ and Dzyaloshinsky-Moriya interactions with strength $D$. In the classical limit where the spin $S$ at each site is very
We have investigated theoretically band structure of spin waves in magnonic crystals with periodicity in one-(1D), two- (2D) and three-dimensions (3D). We have solved Landau-Lifshitz equation with the use of plane wave method, finite element method i
Thermally activated domain wall (DW) motion in magnetic insulators has been considered theoretically, with a particular focus on the role of Dzyaloshinskii-Moriya Interaction (DMI) and thermomagnonic torques. The thermally assisted DW motion is a con