ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutral Current Neutrino Interactions at FASER$ u$

64   0   0.0 ( 0 )
 نشر من قبل Roshan Mammen Abraham
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In detecting neutrinos from the Large Hadron Collider, FASER$ u$ will record the most energetic laboratory neutrinos ever studied. While charged current neutrino scattering events can be cleanly identified by an energetic lepton exiting the interaction vertex, neutral current interactions are more difficult to detect. We explore the potential of FASER$ u$ to observe neutrino neutral current scattering $ u N to u N$, demonstrating techniques to discriminate neutrino scattering events from neutral hadron backgrounds as well as to estimate the incoming neutrino energy given the deep inelastic scattering final state. We find that deep neural networks trained on kinematic observables allow for the measurement of the neutral current scattering cross section over neutrino energies from 100 GeV to several TeV. Such a measurement can be interpreted as a probe of neutrino non-standard interactions that is complementary to limits from other tests such as oscillations and coherent neutrino-nucleus scattering.



قيم البحث

اقرأ أيضاً

We investigate the sensitivity of the FASER$ u$ detector to new physics in the form of non-standard neutrino interactions. FASER$ u$, which has recently been installed 480 m downstream of the ATLAS interaction point, will for the first time study int eractions of multi-TeV neutrinos from a controlled source. Our formalism -- which is applicable to any current and future neutrino experiment -- is based on the Standard Model Effective Theory~(SMEFT) and its counterpart, Weak Effective Field Theory~(WEFT), below the electroweak scale. Starting from the WEFT Lagrangian, we compute the coefficients that modify neutrino production in meson decays and detection via deep-inelastic scattering, and we express the new physics effects in terms of modified flavor transition probabilities. For some coupling structures, we find that FASER$ u$ will be able to constrain interactions that are two to three orders of magnitude weaker than Standard Model weak interactions, implying that the experiment will be indirectly probing new physics at the multi-TeV scale. In some cases, FASER$ u$ constraints will become comparable to existing limits - some of them derived for the first time in this paper - already with $150~$fb${}^{-1}$ of data.
We study generalized neutrino interactions (GNI) for several neutrino processes, including neutrinos from electron-positron collisions, neutrino-electron scattering, and neutrino deep inelastic scattering. We constrain scalar, pseudoscalar, and tenso r new physics effective couplings, based on the standard model effective field theory at low energies. We have performed a global analysis for the different effective couplings. We also present the different individual constraints for each effective parameter (scalar, pseudoscalar, and tensor). Being a global analysis, we show robust results for the restrictions on the different GNI parameters and improve some of these bounds.
We have extended our model for charged current neutrino-nucleus interactions to neutral current reactions. For the elementary neutrino-nucleon interaction, we take into account quasielastic scattering, Delta excitation and the excitation of the reson ances in the second resonance region. Our model for the neutrino-nucleus collisions includes in-medium effects such as Fermi motion, Pauli blocking, nuclear binding, and final-state interactions. They are implemented by means of the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) coupled-channel transport model. This allows us to study exclusive channels, namely pion production and nucleon knockout. We find that final-state interactions modify considerably the distributions through rescattering, charge-exchange and absorption. Side-feeding induced by charge-exchange scattering is important in both cases. In the case of pions, there is a strong absorption associated with the in-medium pionless decay modes of the Delta, while nucleon knockout exhibits a considerable enhancement of low energy nucleons due to rescattering. At neutrino energies above 1 GeV, we also obtain that the contribution to nucleon knockout from Delta excitation is comparable to that from quasielastic scattering.
We have applied a microscopic model for single photon emission in neutral current interactions on nucleons and nuclei to determine the number and distributions of such events at the Super-Kamiokande detector, for the flux and beam exposure of the T2K experiment in neutrino mode. These reactions represent an irreducible background in electron-(anti)neutrino appearance measurements aimed at a precise measurement of mixing angle $theta_{13}$ and the $CP$ violating phase. We have obtained a total number of photon events that is twice larger than the one from the NEUT event generator (version 5.1.4.2) used in the analysis of T2K data. Detailed comparisons of energy and angular distributions for the $ u_mu$ and $bar u_mu$ fluxes have also been performed.
The treatment of nuclear effects in neutrino-nucleus interactions is one of the main sources of systematic uncertainty for the analysis and interpretation of data of neutrino oscillation experiments. Neutrinos interact with nuclei via charged or neut ral currents and both cases must be studied to obtain a complete information. We give an overview of the theoretical work that has been done to describe nuclear effects in neutral-current neutrin onucleus scattering in the kinematic region ranging between beam energies of a few hundreds MeV to a few GeV, which is typical of most ongoing and future accelerator-based neutrino experiments, and where quasielastic scattering is the main interaction mechanism. We review the current status and challenges of the theoretical models, the role and relevance of the contributions of different nuclear effects, and the present status of the comparison between the numerical predictions of the models as well as the available experimental data. We discuss also the sensitivity to the strange form factors of the nucleon and the methods and observables that can allow one to obtain evidence for a possible strange quark contribution from measurements of neutrino and antineutrino-nucleus scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا